In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering

2004 ◽  
Vol 92 (6) ◽  
pp. 1180-1192 ◽  
Author(s):  
Ioan Notingher ◽  
Gavin Jell ◽  
Ulrich Lohbauer ◽  
Vehid Salih ◽  
Larry L. Hench
Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2261
Author(s):  
Sheila Maiz-Fernández ◽  
Leyre Pérez-Álvarez ◽  
Leire Ruiz-Rubio ◽  
Jose Luis Vilas-Vilela ◽  
Senentxu Lanceros-Mendez

In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a non-invasive nature due to their localized action or the ability to perfectly adapt to the place to be replaced regardless the size, shape or irregularities. In recent years, research has particularly focused on in situ hydrogels based on natural polysaccharides due to their promising properties such as biocompatibility, biodegradability and their ability to self-repair. This last property inspired in nature gives them the possibility of maintaining their integrity even after damage, owing to specific physical interactions or dynamic covalent bonds that provide reversible linkages. In this review, the different self-healing mechanisms, as well as the latest research on in situ self-healing hydrogels, is presented, together with the potential applications of these materials in tissue regeneration.


2020 ◽  
pp. 71-74
Author(s):  
M.M. Melnyk ◽  
◽  
S.V. Nespradko ◽  
I.V. Goncharuk ◽  
M.V. Marchenko ◽  
...  

The objective: analyse the effectiveness of diagnosis and treatment for early cervical cancer. Materials and methods. Analysed 107 cases of women’s disease on CIN ІІІ, cancer in situ, they were on treatment in National cancer institute and Kyiv dictrict cancer dispensary from 2010 till 2015 years. Results. Diagnosed percent relapse CIN ІІІ, cancer in situ contain 4.57% uninvasive and invasive form – 0.94%. Conclusion. According diagnostic CIN ІІ and CIN ІІІ is recommended to do treatment conization and dynamic dispensary observation. Are making complex program of infection HPV16, 18. In appering of margins resection some elements of tumor after wider conization by forms of cancer in situ. Many of expansive burns in cervical glands, in making of reproductive function, going disease (nodel leiomyoma of corpus uteri etc). In perspective is accept the notion of looking after and screening research of considering infection HPV16, 18 on CIN І, CIN ІІ. Key words: cervical cancer, сancer in situ, CIN І–ІІІ, diagnostic, treatment, conization.


2007 ◽  
Vol 58 (2) ◽  
pp. 201-202
Author(s):  
Y. Tada ◽  
T. Suzuki ◽  
Y. Nomoto ◽  
S. Kanemaru ◽  
T. Nakamura ◽  
...  

Author(s):  
Vikas V. Gaikwad ◽  
Abasaheb B. Patil ◽  
Madhuri V. Gaikwad

Scaffolds are used for drug delivery in tissue engineering as this system is a highly porous structure to allow tissue growth.  Although several tissues in the body can regenerate, other tissue such as heart muscles and nerves lack regeneration in adults. However, these can be regenerated by supplying the cells generated using tissue engineering from outside. For instance, in many heart diseases, there is need for heart valve transplantation and unfortunately, within 10 years of initial valve replacement, 50–60% of patients will experience prosthesis associated problems requiring reoperation. This could be avoided by transplantation of heart muscle cells that can regenerate. Delivery of these cells to the respective tissues is not an easy task and this could be done with the help of scaffolds. In situ gel forming scaffolds can also be used for the bone and cartilage regeneration. They can be injected anywhere and can take the shape of a tissue defect, avoiding the need for patient specific scaffold prefabrication and they also have other advantages. Scaffolds are prepared by biodegradable material that result in minimal immune and inflammatory response. Some of the very important issues regarding scaffolds as drug delivery systems is reviewed in this article.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 287
Author(s):  
Ye Lin Park ◽  
Kiwon Park ◽  
Jae Min Cha

Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jingang Li ◽  
Yaoran Liu ◽  
Linhan Lin ◽  
Mingsong Wang ◽  
Taizhi Jiang ◽  
...  

AbstractConstructing colloidal particles into functional nanostructures, materials, and devices is a promising yet challenging direction. Many optical techniques have been developed to trap, manipulate, assemble, and print colloidal particles from aqueous solutions into desired configurations on solid substrates. However, these techniques operated in liquid environments generally suffer from pattern collapses, Brownian motion, and challenges that come with reconfigurable assembly. Here, we develop an all-optical technique, termed optothermally-gated photon nudging (OPN), for the versatile manipulation and dynamic patterning of a variety of colloidal particles on a solid substrate at nanoscale accuracy. OPN takes advantage of a thin surfactant layer to optothermally modulate the particle-substrate interaction, which enables the manipulation of colloidal particles on solid substrates with optical scattering force. Along with in situ optical spectroscopy, our non-invasive and contactless nanomanipulation technique will find various applications in nanofabrication, nanophotonics, nanoelectronics, and colloidal sciences.


Sign in / Sign up

Export Citation Format

Share Document