scholarly journals Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2261
Author(s):  
Sheila Maiz-Fernández ◽  
Leyre Pérez-Álvarez ◽  
Leire Ruiz-Rubio ◽  
Jose Luis Vilas-Vilela ◽  
Senentxu Lanceros-Mendez

In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a non-invasive nature due to their localized action or the ability to perfectly adapt to the place to be replaced regardless the size, shape or irregularities. In recent years, research has particularly focused on in situ hydrogels based on natural polysaccharides due to their promising properties such as biocompatibility, biodegradability and their ability to self-repair. This last property inspired in nature gives them the possibility of maintaining their integrity even after damage, owing to specific physical interactions or dynamic covalent bonds that provide reversible linkages. In this review, the different self-healing mechanisms, as well as the latest research on in situ self-healing hydrogels, is presented, together with the potential applications of these materials in tissue regeneration.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


2019 ◽  
Vol 118 ◽  
pp. 176-185 ◽  
Author(s):  
Loredana Elena Nita ◽  
Aurica P. Chiriac ◽  
Alina Gabriela Rusu ◽  
Maria Bercea ◽  
Alina Ghilan ◽  
...  

2020 ◽  
Vol 8 (18) ◽  
pp. 9013-9020 ◽  
Author(s):  
Haitao Wei ◽  
Yi Yang ◽  
Xin Huang ◽  
Yong Zhu ◽  
Hao Wang ◽  
...  

A bottom-up strategy to reinforce self-healing elastomers with in situ assembled supramolecular nanosheets with switchable interfacial covalent bonds.


2008 ◽  
Vol 377 ◽  
pp. 151-166 ◽  
Author(s):  
Larry L. Hench ◽  
Julia M. Polak

Historically the function of biomaterials has been to replace diseased, damaged and aged tissues. First generation biomaterials, including bio ceramics, were selected to be as inert as possible in order to minimize the thickness of interfacial scar tissue. Bioactive glasses provided an alternative from the 1970’s onward; second generation bioactive bonding of implants with tissues and no interfacial scar tissue. This chapter reviews the discovery that controlled release of biologically active Ca and Si ions from bioactive glasses leads to the up-regulation and activation of seven families of genes in osteoprogenitor cells that give rise to rapid bone regeneration. This finding offers the possibility of creating a new generation of gene activating bioceramics designed specially for tissue engineering and in situ regeneration of tissues.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 750 ◽  
Author(s):  
Saba Abdulghani ◽  
Geoffrey Mitchell

This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.


2007 ◽  
Vol 561-565 ◽  
pp. 1467-1470 ◽  
Author(s):  
Yasuhiko Tabata

A new therapeutic trial based on the self-healing potential of cells to naturally induce tissue regeneration, has been recently noted. To realize this regenerative medical therapy, it is highly required to efficiently combine cells with their local environment which basically allows cells to survive and biologically function in vivo through the essential interaction. Tissue engineering is a biomedical technology or methodology to create the local environment which promotes the proliferation and differentiation of cells to induce tissue regeneration. There are some cases where tissue regeneration can be induced only by supplying a cell scaffold of biomaterials. Drug delivery system (DDS) with biomaterials enhanced the in vivo biological activities of un-stable growth factor and gene for cell-induced tissue regeneration. The controlled release technology enabled growth factors to achieve the regeneration of various tissues experimentally and clinically. The DDS technology also augmented the biological functions of plasmid DNA and small interference RNA. The cells genetically engineered by the DDS gene system showed an enhanced therapeutic efficacy in cell-based tissue regeneration (cell-gene hybrid therapy). By making use of DDS technology, it is possible to suppress the deterioration and proceeding of chronic fibrotic diseases based on the self-healing potential inherently equipped in the living body. This paper emphasizes significance of biomaterials in tissue engineering for regenerative medical therapy.


2004 ◽  
Vol 92 (6) ◽  
pp. 1180-1192 ◽  
Author(s):  
Ioan Notingher ◽  
Gavin Jell ◽  
Ulrich Lohbauer ◽  
Vehid Salih ◽  
Larry L. Hench

2021 ◽  
Vol 22 (10) ◽  
pp. 5378
Author(s):  
Mohan Vedhanayagam ◽  
Iruthayapandi Selestin Raja ◽  
Anara Molkenova ◽  
Timur Sh. Atabaev ◽  
Kalarical Janardhanan Sreeram ◽  
...  

Regeneration of damaged tissues or organs is one of the significant challenges in tissue engineering and regenerative medicine. Many researchers have fabricated various scaffolds to accelerate the tissue regeneration process. However, most of the scaffolds are limited in clinical trials due to scaffold inconsistency, non-biodegradability, and lack of non-invasive techniques to monitor tissue regeneration after implantation. Recently, carbon dots (CDs) mediated fluorescent scaffolds are widely explored for the application of image-guided tissue engineering due to their controlled architecture, light-emitting ability, higher chemical and photostability, excellent biocompatibility, and biodegradability. In this review, we provide an overview of the recent advancement of CDs in terms of their different synthesis methods, tunable physicochemical, mechanical, and optical properties, and their application in tissue engineering. Finally, this review concludes the further research directions that can be explored to apply CDs in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document