Role of lactadherin in intestinal barrier integrity in experimental neonatal necrotizing enterocolitis

2019 ◽  
Vol 120 (12) ◽  
pp. 19509-19517 ◽  
Author(s):  
Haiqing Shen ◽  
Yihui Lei ◽  
Xuemei He ◽  
Danyang Liu ◽  
Zhenjuan He
2011 ◽  
Vol 140 (5) ◽  
pp. S-634-S-635
Author(s):  
Claire B. Larmonier ◽  
Daniel Laubitz ◽  
Alexis L. Bucknam ◽  
Robert D. Thurston ◽  
Faihza M. Hill ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220642 ◽  
Author(s):  
Yuliia Holota ◽  
Taisa Dovbynchuk ◽  
Izumi Kaji ◽  
Igor Vareniuk ◽  
Natalia Dzyubenko ◽  
...  

2015 ◽  
Vol 96 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Paul G. Thomes ◽  
Natalia A. Osna ◽  
Sarah M. Bligh ◽  
Dean J. Tuma ◽  
Kusum K. Kharbanda

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lukas Franz Mager ◽  
Viktor Hendrik Koelzer ◽  
Regula Stuber ◽  
Lester Thoo ◽  
Irene Keller ◽  
...  

Aberrant alternative pre-mRNA splicing (AS) events have been associated with several disorders. However, it is unclear whether deregulated AS directly contributes to disease. Here, we reveal a critical role of the AS regulator epithelial splicing regulator protein 1 (ESRP1) for intestinal homeostasis and pathogenesis. In mice, reduced ESRP1 function leads to impaired intestinal barrier integrity, increased susceptibility to colitis and altered colorectal cancer (CRC) development. Mechanistically, these defects are produced in part by modified expression of ESRP1-specific Gpr137 isoforms differently activating the Wnt pathway. In humans, ESRP1 is downregulated in inflamed biopsies from inflammatory bowel disease patients. ESRP1 loss is an adverse prognostic factor in CRC. Furthermore, generation of ESRP1-dependent GPR137 isoforms is altered in CRC and expression of a specific GPR137 isoform predicts CRC patient survival. These findings indicate a central role of ESRP1-regulated AS for intestinal barrier integrity. Alterations in ESRP1 function or expression contribute to intestinal pathology.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1946368
Author(s):  
Angélica Cruz-Lebrón ◽  
Ramona Johnson ◽  
Claire Mazahery ◽  
Zach Troyer ◽  
Samira Joussef-Piña ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 187
Author(s):  
Lokman Pang ◽  
Jennifer Huynh ◽  
Mariah G. Alorro ◽  
Xia Li ◽  
Matthias Ernst ◽  
...  

The intestinal epithelium provides a barrier against commensal and pathogenic microorganisms. Barrier dysfunction promotes chronic inflammation, which can drive the pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although the Signal Transducer and Activator of Transcription-3 (STAT3) is overexpressed in both intestinal epithelial cells and immune cells in IBD patients, the role of the interleukin (IL)-6 family of cytokines through the shared IL-6ST/gp130 receptor and its associated STAT3 signalling in intestinal barrier integrity is unclear. We therefore investigated the role of STAT3 in retaining epithelial barrier integrity using dextran sulfate sodium (DSS)-induced colitis in two genetically modified mouse models, to either reduce STAT1/3 activation in response to IL-6 family cytokines with a truncated gp130∆STAT allele (GP130∆STAT/+), or by inducing short hairpin-mediated knockdown of Stat3 (shStat3). Here, we show that mice with reduced STAT3 activity are highly susceptible to DSS-induced colitis. Mechanistically, the IL-6/gp130/STAT3 signalling cascade orchestrates intestinal barrier function by modulating cytokine secretion and promoting epithelial integrity to maintain a defence against bacteria. Our study also identifies a crucial role of STAT3 in controlling intestinal permeability through tight junction proteins. Thus, therapeutically targeting the IL-6/gp130/STAT3 signalling axis to promote barrier function may serve as a treatment strategy for IBD patients.


Sign in / Sign up

Export Citation Format

Share Document