Interaction of various intracellular signaling mechanisms involved in mononuclear phagocyte toxicity toward neuronal cells

2000 ◽  
Vol 67 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Andis Klegeris ◽  
Patrick L. McGeer
FACE ◽  
2021 ◽  
pp. 273250162110243
Author(s):  
Mikhail Pakvasa ◽  
Andrew B. Tucker ◽  
Timothy Shen ◽  
Tong-Chuan He ◽  
Russell R. Reid

Hedgehog signaling was discovered more than 40 years ago in experiments demonstrating that it is a fundamental mediator of limb development. Since that time, it has been shown to be important in development, homeostasis, and disease. The hedgehog pathway proceeds through a pathway highly conserved throughout animals beginning with the extracellular diffusion of hedgehog ligands, proceeding through an intracellular signaling cascade, and ending with the activation of specific target genes. A vast amount of research has been done elucidating hedgehog signaling mechanisms and regulation. This research has found a complex system of genetics and signaling that helps determine how organisms develop and function. This review provides an overview of what is known about hedgehog genetics and signaling, followed by an in-depth discussion of the role of hedgehog signaling in craniofacial development and carcinogenesis.


1991 ◽  
Vol 260 (2) ◽  
pp. L105-L112 ◽  
Author(s):  
A. K. Wilson ◽  
A. Takai ◽  
J. C. Ruegg ◽  
P. de Lanerolle

Cellular locomotion results from a series of spatially and temporally integrated reactions. The coordinated regulation of these reactions requires sensitive intracellular signaling mechanisms. Because protein phosphorylation reactions represent important signaling mechanisms in mammalian cells, we investigated the effect of okadaic acid, a phosphoprotein phosphatase inhibitor, on protein phosphorylation and macrophage motility. Okadaic acid was applied to rat alveolar macrophages, and motility was quantitated by a directed chemotaxis assay. Okadaic acid inhibits macrophage motility in a dose-dependent fashion; the concentrations for 50 and 100% inhibition were 3 and 25 microM, respectively. Protein phosphorylation studies demonstrated a 2.5-fold increase in total protein phosphorylation in macrophages treated with 25 microM okadaic acid. These experiments also demonstrated a dose-dependent increase in the phosphorylation of the 20-kDa light chain of myosin. Moreover, 25 microM okadaic acid 1) maximally increased myosin light chain phosphorylation by 6.6-fold, 2) raised the level of myosin associated with the cytoskeleton from a basal level of 47.0 to 96.7% of the total myosin, and 3) induced profound morphological changes as visualized by scanning electron microscopy. These data correlate an increase in protein phosphorylation with a decrease in macrophage motility. Furthermore, they suggest that phosphoprotein phosphatase inhibition may prevent motility by uncoupling coordinated processes, such as cytoskeletal reorganization, that are essential for macrophage motility.


Blood ◽  
2020 ◽  
Vol 136 (20) ◽  
pp. 2346-2358 ◽  
Author(s):  
Özgün Babur ◽  
Alexander R. Melrose ◽  
Jennifer M. Cunliffe ◽  
John Klimek ◽  
Jiaqing Pang ◽  
...  

Abstract Platelets engage cues of pending vascular injury through coordinated adhesion, secretion, and aggregation responses. These rapid, progressive changes in platelet form and function are orchestrated downstream of specific receptors on the platelet surface and through intracellular signaling mechanisms that remain systematically undefined. This study brings together cell physiological and phosphoproteomics methods to profile signaling mechanisms downstream of the immunotyrosine activation motif (ITAM) platelet collagen receptor GPVI. Peptide tandem mass tag (TMT) labeling, sample multiplexing, synchronous precursor selection (SPS), and triple stage tandem mass spectrometry (MS3) detected >3000 significant (false discovery rate < 0.05) phosphorylation events on >1300 proteins over conditions initiating and progressing GPVI-mediated platelet activation. With literature-guided causal inference tools, >300 site-specific signaling relations were mapped from phosphoproteomics data among key and emerging GPVI effectors (ie, FcRγ, Syk, PLCγ2, PKCδ, DAPP1). Through signaling validation studies and functional screening, other less-characterized targets were also considered within the context of GPVI/ITAM pathways, including Ras/MAPK axis proteins (ie, KSR1, SOS1, STAT1, Hsp27). Highly regulated GPVI/ITAM targets out of context of curated knowledge were also illuminated, including a system of >40 Rab GTPases and associated regulatory proteins, where GPVI-mediated Rab7 S72 phosphorylation and endolysosomal maturation were blocked by TAK1 inhibition. In addition to serving as a model for generating and testing hypotheses from omics datasets, this study puts forth a means to identify hemostatic effectors, biomarkers, and therapeutic targets relevant to thrombosis, vascular inflammation, and other platelet-associated disease states.


Author(s):  
Ria Margiana ◽  
Akmal Primadian Suprapto

  Objective: Intracellular signaling mechanism is an important biological function, as scholars continue to seek new ways of improving social memory. Researchers have conducted several studies on the role of synapsin I in intracellular signaling mechanism. This study assessed the empirical evidence that shows the role of synapsin I in intracellular signaling mechanism with the aim of achieving exercise-induced improvement in social memory.Methods: Nine previously conducted researches were reviewed in this paper. The included studies were controlled laboratory experiments involving mice as the subjects.Results: Although the studies included were done in different timelines, the researchers agreed in unison that synapsin I plays a crucial role in cell signaling. The outcome of the practical studies was vital in understanding function and physiology of human cells, which is fundamental in science and human anatomy.Conclusion: In particular, the findings shows how exercise can improve social memory by triggering the intracellular signaling mechanism. The limited number of studies addressing the topic of intracellular cell signaling suggests that more study is needed to provide more evidence on the issue.


2000 ◽  
Vol 78 (12) ◽  
pp. 1003-1012 ◽  
Author(s):  
C V Andreu-Vieyra ◽  
H R Habibi

Apoptosis is a form of programmed cell death that is essential for the development of the embryo and adult tissue plasticity. In adults, it is observed mainly in those tissues undergoing active differentiation such as the hematopoietic system, testis, ovary, and intestinal epithelium. Apoptosis can be triggered by many factors, such as hormones, cytokines, and drugs, depending on the type of the cell. While the intracellular signaling mechanisms may vary in different cells, they all display similar morphological and biochemical features at the later stages of the apoptotic process. This review focuses on the factors controlling ovarian apoptosis, emphasizing observations made on GnRH-induced apoptotic process in goldfish follicles.Key words: apoptosis, ovary, GnRH.


2010 ◽  
Vol 30 (19) ◽  
pp. 4550-4563 ◽  
Author(s):  
Alessandra da Silva Dantas ◽  
Miranda J. Patterson ◽  
Deborah A. Smith ◽  
Donna M. MacCallum ◽  
Lars P. Erwig ◽  
...  

ABSTRACT The ability of the major systemic fungal pathogen of humans, Candida albicans, to sense and respond to reactive oxygen species (ROS), such as H2O2 generated by the host immune system, is required for survival in the host. However, the intracellular signaling mechanisms underlying such responses are poorly understood. Here, we show that thioredoxin (Trx1), in addition to its antioxidant activity, plays a central role in coordinating the response of C. albicans to ROS by regulating multiple pathways. In particular, Trx1 function is important for H2O2-induced phosphorylation of the Hog1 stress-activated protein kinase and to reverse H2O2-induced oxidation and activation of the AP-1 like transcription factor Cap1. Furthermore, Trx1 regulates H2O2-induced hyperpolarized bud growth in a mechanism that involves activation of the Rad53 checkpoint kinase. Consistent with its key roles in responses to ROS, cells lacking Trx1 displayed significantly attenuated virulence in a murine model of C. albicans systemic infection. Collectively, our data indicate that Trx1 has a multifaceted role in H2O2 signaling and promotes C. albicans survival in the host.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Janne Oestvang ◽  
Marit W. Anthonsen ◽  
Berit Johansen

Oxidized low-density lipoproteins (LDLs) play an important role during the development of atherosclerosis characterized by intimal inflammation and macrophage accumulation. A key component of LDL is lysophosphatidylcholine (lysoPC). LysoPC is a strong proinflammatory mediator, and its mechanism is uncertain, but it has been suggested to be mediated via the platelet activating factor (PAF) receptor. Here, we report that PAF triggers a pertussis toxin- (PTX-) sensitive intracellular signaling pathway leading to sequential activation of sPLA2, PLD, cPLA2, and AA release in human-derived monocytes. In contrast, lysoPC initiates two signaling pathways, one sequentially activating PLD and cPLA2, and a second parallel PTX-sensitive pathway activating cPLA2with concomitant activation of sPLA2, all leading to AA release. In conclusion, lysoPC and PAF stimulate AA release by divergent pathways suggesting involvement of independent receptors. Elucidation of monocyte lysoPC-specific signaling mechanisms will aid in the development of novel strategies for atherosclerosis prevention, diagnosis, and therapy.


Sign in / Sign up

Export Citation Format

Share Document