Evaluation of the urban effect of long-term relative humidity and the separation of temperature and water vapor effects

2007 ◽  
Vol 27 (11) ◽  
pp. 1531-1542 ◽  
Author(s):  
Hyang-Hee Um ◽  
Kyung-Ja Ha ◽  
Sun-Seon Lee
2013 ◽  
Vol 30 (10) ◽  
pp. 2303-2319 ◽  
Author(s):  
Eui-Seok Chung ◽  
Brian J. Soden ◽  
Viju O. John

Abstract This paper analyzes the growing archive of 183-GHz water vapor absorption band measurements from the Advanced Microwave Sounding Unit B (AMSU-B) and Microwave Humidity Sounder (MHS) on board polar-orbiting satellites and document adjustments necessary to use the data for long-term climate monitoring. The water vapor channels located at 183.31 ± 1 GHz and 183.31 ± 3 GHz are sensitive to upper- and midtropospheric relative humidity and less prone to the clear-sky sampling bias than infrared measurements, making them a valuable but underutilized source of information on free-tropospheric water vapor. A method for the limb correction of the satellite viewing angle based upon a simplified model of radiative transfer is introduced to remove the scan angle dependence of the radiances. Biases due to the difference in local observation time between satellites and spurious trends associated with satellite orbital drift are then diagnosed and adjusted for using synthetic radiative simulations based on the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim). The adjusted, cloud-filtered, and limb-corrected brightness temperatures are then intercalibrated using zonal-mean brightness temperature differences. It is found that these correction procedures significantly improve consistency and quantitative agreement between microwave radiometric satellite observations that can be used to monitor upper- and midtropospheric water vapor. The resulting radiances are converted to estimates of the deep-layer-mean upper- and midtropospheric relative humidity, and can be used to evaluate trends in upper-tropospheric relative humidity from reanalysis datasets and coupled ocean–atmosphere models.


2009 ◽  
Vol 22 (24) ◽  
pp. 6773-6787 ◽  
Author(s):  
Hélène Brogniez ◽  
Rémy Roca ◽  
Laurence Picon

Abstract Water vapor in the midtroposphere is an important element for the earth radiation budget. Despite its importance, the relative humidity in the free troposphere is not very well documented, mainly because of the difficulties associated with its measurements. A new long-term archive of free tropospheric humidity (FTH) derived from the water vapor channel of the Meteosat satellite from 1983 to 2005 is introduced. Special attention is dedicated to the long-term homogeneity and the definition of the retrieval layer. It is shown to complement the existing databases and is used to establish the climatology of FTH. Interannual variability is then evaluated for each season by using a normalized interannual standard deviation. This normalization approach reveals the importance of the relative variability of the dry areas to the moist regions. In consequence, emphasis is on the driest area of the region. Focusing on composites of the moist and dry seasons of the time series, the authors demonstrate that the 500-hPa relative humidity field, reconstructed using an idealized Lagrangian model, is a good proxy for the FTH variability there. The analysis of the origin of the air mass, using the back trajectory model, points out that lateral mixing between the deep tropics and extratropical latitudes takes place over this area, as advocated in previous theoretical studies. Systematic estimation of this large-scale mixing shows that, indeed, a significant part of the interannual variability of the free tropospheric humidity in this subtropical region stems from the amount of mixing of air originating from the deep tropics versus extratropical latitudes. The importance of this mechanism in the general understanding of the FTH distribution and variability is then discussed.


2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


Author(s):  
Seremak Wioletta ◽  
Baszczuk Agnieszka ◽  
Jasiorski Marek ◽  
Gibas Anna ◽  
Winnicki Marcin

AbstractThis work shows that the titanium dioxide coatings obtained by low-pressure cold gas spraying with the use of the sol–gel amorphous TiO2 powder are characterized by photocatalytic activity despite their partial amorphous content. Moreover, the research outcome suggests that the decomposition rate of organic pollutants is enhanced after long-term exposure to moisture. The condensation humidity test is not detrimental to the continuity and integrity of the coating, but the phase composition of coatings changes—with the exposure to water vapor, the portion of the amorphous phase crystallizes into brookite. The mechanism responsible for the conversion of amorphous TiO2 into brookite is attributed to the water-driven dissolution and reprecipitation of TiO6 octahedra. It has been shown that an additional parameter necessary for the stabilization of the brookite is the oxygen depletion of the amorphous structure of titanium dioxide. Considering the results presented in this paper and the advantages of a portable, low-pressure cold spray system for industrial applications, it is expected that TiO2 coatings produced from a sol–gel feedstock powder can be further developed and tested as efficient photocatalysts.


2020 ◽  
Author(s):  
Hongru Yan ◽  
Jianping Huang ◽  
Yongli He ◽  
Yuzhi Liu ◽  
Tianhe Wang ◽  
...  

2021 ◽  
Author(s):  
Andreas Petzold ◽  
Valerie Thouret ◽  
Christoph Gerbig ◽  
Andreas Zahn ◽  
Martin Gallagher ◽  
...  

<p>IAGOS (www.iagos.org) is a European Research Infrastructure using commercial aircraft (Airbus A340, A330, and soon A350) for automatic and routine measurements of atmospheric composition including reactive gases (ozone, carbon monoxide, nitrogen oxides, volatile organic compounds), greenhouse gases (water vapour, carbon dioxide, methane), aerosols and cloud particles along with essential thermodynamic parameters. The main objective of IAGOS is to provide the most complete set of high-quality essential climate variables (ECV) covering several decades for the long-term monitoring of climate and air quality. The observations are stored in the IAGOS data centre along with added-value products to facilitate the scientific interpretation of the data. IAGOS began as two European projects, MOZAIC and CARIBIC, in the early 1990s. These projects demonstrated that commercial aircraft are ideal platforms for routine atmospheric measurements. IAGOS then evolved as a European Research Infrastructure offering a mature and sustainable organization for the benefits of the scientific community and for the operational services in charge of air quality and climate change issues such as the Copernicus Atmosphere Monitoring Services (CAMS) and the Copernicus Climate Change Service (C3S). IAGOS is also a contributing network of the World Meteorological Organization (WMO).</p> <p>IAGOS provides measurements of numerous chemical compounds which are recorded simultaneously in the critical region of the upper troposphere – lower stratosphere (UTLS) and geographical regions such as Africa and the mid-Pacific which are poorly sampled by other means. The data are used by hundreds of groups worldwide performing data analysis for climatology and trend studies, model evaluation, satellite validation and the study of detailed chemical and physical processes around the tropopause. IAGOS data also play an important role in the re-assessment of the climate impact of aviation.</p> <p>Most important in the context of weather-related research, IAGOS and its predecessor programmes provide long-term observations of water vapour and relative humidity with respect to ice in the UTLS as well as throughout the tropospheric column during climb-out and descending phases around airports, now for more than 25 years. The high quality and very good resolution of IAGOS observations of relative humidity over ice are used to better understand the role of water vapour and of ice-supersaturated air masses in the tropopause region and to improve their representation in numerical weather and climate forecasting models. Furthermore, CAMS is using the water vapour vertical profiles in near real time for the continuous validation of the CAMS atmospheric models. </p>


1938 ◽  
Vol 34 (2) ◽  
pp. 208-208
Author(s):  
N. I. Kalitin

Biomedgiz. Leningrad branch. 1937 208 pp. Pr. 6 rubles. 50 kopecks. The content of the book is much wider than what the reader has a right to expect, judging by its title. The book concerns not only the measurement of radiant energy and touches on not only issues of interest to doctors working in resorts. The properties of solar radiation under various conditions, the influence of water vapor, ozone, dustiness of the atmosphere, the value of scattered radiation reflected from the sky and clouds, which is usually not paid enough attention, all these and many other issues are covered in detail in the book of prof. N.I. Kalitina largely on the basis of her own long-term research.


Author(s):  
Arthur M. Spickett ◽  
Gordon J. Gallivan ◽  
Ivan G. Horak

The study aimed to assess the long-term population dynamics of questing Rhipicephalus appendiculatus and Rhipicephalus zambeziensis in two landscape zones of the Kruger National Park (KNP). Ticks were collected by dragging the vegetation monthly in three habitats (grassland, woodland and gully) at two sites in the KNP (Nhlowa Road and Skukuza) from August 1988 to March 2002. Larvae were the most commonly collected stage of both species. More R. appendiculatus were collected at Nhlowa Road than at Skukuza, with larvae being most abundant from May to August, while nymphs were most abundant from August to December. Larvae were most commonly collected in the gullies from 1991 to 1994, but in the grassland and woodland habitats from 1998 onwards. Nymphs were most commonly collected in the grassland and woodland. More R. zambeziensis were collected at Skukuza than at Nhlowa Road, with larvae being most abundant from May to September, while nymphs were most abundant from August to November. Larvae and nymphs were most commonly collected in the woodland and gullies and least commonly in the grassland (p < 0.01). The lowest numbers of R. appendiculatus were collected in the mid-1990s after the 1991/1992 drought. Rhipicephalus zambeziensis numbers declined after 1991 and even further after 1998, dropping to their lowest levels during 2002. The changes in numbers of these two species reflected changes in rainfall and the populations of several of their large herbivore hosts, as well as differences in the relative humidity between the two sites over time.


Sign in / Sign up

Export Citation Format

Share Document