scholarly journals Intercalibrating Microwave Satellite Observations for Monitoring Long-Term Variations in Upper- and Midtropospheric Water Vapor*

2013 ◽  
Vol 30 (10) ◽  
pp. 2303-2319 ◽  
Author(s):  
Eui-Seok Chung ◽  
Brian J. Soden ◽  
Viju O. John

Abstract This paper analyzes the growing archive of 183-GHz water vapor absorption band measurements from the Advanced Microwave Sounding Unit B (AMSU-B) and Microwave Humidity Sounder (MHS) on board polar-orbiting satellites and document adjustments necessary to use the data for long-term climate monitoring. The water vapor channels located at 183.31 ± 1 GHz and 183.31 ± 3 GHz are sensitive to upper- and midtropospheric relative humidity and less prone to the clear-sky sampling bias than infrared measurements, making them a valuable but underutilized source of information on free-tropospheric water vapor. A method for the limb correction of the satellite viewing angle based upon a simplified model of radiative transfer is introduced to remove the scan angle dependence of the radiances. Biases due to the difference in local observation time between satellites and spurious trends associated with satellite orbital drift are then diagnosed and adjusted for using synthetic radiative simulations based on the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim). The adjusted, cloud-filtered, and limb-corrected brightness temperatures are then intercalibrated using zonal-mean brightness temperature differences. It is found that these correction procedures significantly improve consistency and quantitative agreement between microwave radiometric satellite observations that can be used to monitor upper- and midtropospheric water vapor. The resulting radiances are converted to estimates of the deep-layer-mean upper- and midtropospheric relative humidity, and can be used to evaluate trends in upper-tropospheric relative humidity from reanalysis datasets and coupled ocean–atmosphere models.

2009 ◽  
Vol 2 (2) ◽  
pp. 1075-1097
Author(s):  
A. Sarkissian ◽  
J. Slusser

Abstract. Water vapor total column measurements at Observatoire de Haute Provence (5°42' E, +43°55' N), south of France, were obtained using observations of astronomical objects made between July 1994 and December 2004 on the 193-cm telescope with the high-resolution spectrometer Elodie. Spectra of stars, nebulae, and other astronomical objects were taken regularly during 10 years. More than 18 000 spectra from 400 nm to 680 nm are available on-line in the Elodie Archive. This archive, usually explored by astronomers, contains information to study the atmosphere of the Earth. Water vapor absorption lines appear in the visible in delimited bands that astronomers often avoid for their spectral analysis. We used the Elodie Archive with two objectives: firstly, to retrieve seasonal variability and long-term trend of atmospheric water vapor, and secondly, to remove signatures in spectra for further astronomical or geophysical use. The tools presented here are developed following, when possible, formats and standards recommended by the International Virtual Observatory Alliance.


2016 ◽  
Vol 9 (9) ◽  
pp. 4673-4686 ◽  
Author(s):  
Andreas Reichert ◽  
Markus Rettinger ◽  
Ralf Sussmann

Abstract. Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (<  2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm−1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2σ) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1 % in window regions and up to 1.7 % within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm−1 range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7 % of the spectral range.


2016 ◽  
Author(s):  
Andreas Reichert ◽  
Markus Rettinger ◽  
Ralf Sussmann

Abstract. Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (< 2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm−1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2 σ) is below 1 % in window regions and up to 1.7 % within absorption bands. A validation of this calibration uncertainty estimate is performed by investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm−1-range. A second validation effort consists in a comparison of a set of calibrated spectra to radiative transfer model calculations, which are consistent within the estimated errors for 97.7 % of the spectral range.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5347
Author(s):  
Xiaoning Jia ◽  
Joris Roels ◽  
Roel Baets ◽  
Gunther Roelkens

In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.


2020 ◽  
Vol 858 ◽  
pp. 129-139
Author(s):  
Ariel Verzosa Melendres ◽  
Rolan Pepito Vera Cruz

The ability of superabsorbent polymers (SAP) to absorb water vapor was studied. A multilayer composite material was prepared where SAP particles were spread in the fluffy fibrous layer located in the middle of the composite structure. Distribution of SAP within the composite material permits air to pass through its porous structure effectively hence allowing efficient contact of air with SAP. SAP was able to decrease the relative humidity of air of a 3-L cabinet from 96% relative humidity (RH) to 52% and 49 % (RH) in 18 hours using 2 g and 4 g of SAP respectively. Study on the water vapor absorption ability of SAP placed together with pure water in a closed cabinet was conducted with and without convective air transport effect. Convective air transport was done by activating the 12 V fan allowing air recirculation speed at rates corresponding to constant voltage settings of 6 V and 12 V. Higher SAP water vapor absorption rate was obtained at higher air recirculation speed. SAP particles swelled after water vapor absorption with slight decrease in the porosity of composite material as observed through the digital microscope.


2009 ◽  
Vol 22 (24) ◽  
pp. 6773-6787 ◽  
Author(s):  
Hélène Brogniez ◽  
Rémy Roca ◽  
Laurence Picon

Abstract Water vapor in the midtroposphere is an important element for the earth radiation budget. Despite its importance, the relative humidity in the free troposphere is not very well documented, mainly because of the difficulties associated with its measurements. A new long-term archive of free tropospheric humidity (FTH) derived from the water vapor channel of the Meteosat satellite from 1983 to 2005 is introduced. Special attention is dedicated to the long-term homogeneity and the definition of the retrieval layer. It is shown to complement the existing databases and is used to establish the climatology of FTH. Interannual variability is then evaluated for each season by using a normalized interannual standard deviation. This normalization approach reveals the importance of the relative variability of the dry areas to the moist regions. In consequence, emphasis is on the driest area of the region. Focusing on composites of the moist and dry seasons of the time series, the authors demonstrate that the 500-hPa relative humidity field, reconstructed using an idealized Lagrangian model, is a good proxy for the FTH variability there. The analysis of the origin of the air mass, using the back trajectory model, points out that lateral mixing between the deep tropics and extratropical latitudes takes place over this area, as advocated in previous theoretical studies. Systematic estimation of this large-scale mixing shows that, indeed, a significant part of the interannual variability of the free tropospheric humidity in this subtropical region stems from the amount of mixing of air originating from the deep tropics versus extratropical latitudes. The importance of this mechanism in the general understanding of the FTH distribution and variability is then discussed.


2012 ◽  
Vol 25 (8) ◽  
pp. 2931-2946 ◽  
Author(s):  
Likun Wang ◽  
Cheng-Zhi Zou ◽  
Haifeng Qian

Abstract In recognizing the importance of Stratospheric Sounding Unit (SSU) onboard historical NOAA polar-orbiting satellites in assessment of long-term stratospheric temperature changes and limitations in previous available SSU datasets, this study constructs a fully documented, publicly accessible, and well-merged SSU time series for climate change investigations. Focusing on methodologies, this study describes the details of data processing and bias corrections in the SSU observations for generating consistent stratospheric temperature data records, including 1) removal of the instrument gas leak effect in its CO2 cell; 2) correction of the atmospheric CO2 increase effect; 3) adjustment for different observation viewing angles; 4) removal of diurnal sampling biases due to satellite orbital drift; and 5) statistical merging of SSU observations from different satellites. After reprocessing, the stratospheric temperature records are composed of nadirlike, gridded brightness temperatures that correspond to identical weighting functions and a fixed local observation time. The 27-yr reprocessed SSU data record comprises global monthly and pentad layer temperatures, with grid resolution of 2.5° latitude by 2.5° longitude, of the midstratosphere (TMS), upper stratosphere (TUS), and top stratosphere (TTS), which correspond to the three SSU channel observations. For 1979–2006, the global mean trends for TMS, TUS, and TTS, are respectively −1.236 ± 0.131, −0.926 ± 0.139, and −1.006 ± 0.194 K decade−1. Spatial trend pattern analyses indicated that this cooling occurred globally with larger cooling over the tropical stratosphere.


2020 ◽  
Vol 12 (8) ◽  
pp. 1291
Author(s):  
Wan Wu ◽  
Xu Liu ◽  
Qiguang Yang ◽  
Daniel K. Zhou ◽  
Allen M. Larar

We introduce a novel spectral fingerprinting scheme that can be used to derive long-term atmospheric temperature and water vapor anomalies from hyperspectral infrared sounders such as Cross-track Infrared Sounder (CrIS) and Atmospheric Infrared Sounder (AIRS). It is a challenging task to derive climate trends from real satellite observations due to the difficulty of carrying out accurate cloudy radiance simulations and constructing radiometrically consistent radiative kernels. To address these issues, we use a principal component based radiative transfer model (PCRTM) to perform multiple scattering calculations of clouds and a PCRTM-based physical retrieval algorithm to derive radiometrically consistent radiative kernels from real satellite observations. The capability of including the cloud scattering calculations in the retrieval process allows the establishment of a rigorous radiometric fitting to satellite-observed radiances under all-sky conditions. The fingerprinting solution is directly obtained via an inverse relationship between the atmospheric anomalies and the corresponding spatiotemporally averaged radiance anomalies. Since there is no need to perform Level 2 retrievals on each individual satellite footprint for the fingerprinting approach, it is much more computationally efficient than the traditional way of producing climate data records from spatiotemporally averaged Level 2 products. We have applied the spectral fingerprinting method to six years of CrIS and 16 years of AIRS data to derive long-term anomaly time series for atmospheric temperature and water vapor profiles. The CrIS and AIRS temperature and water vapor anomalies derived from our spectral fingerprinting method have been validated using results from the PCRTM-based physical retrieval algorithm and the AIRS operational retrieval algorithm, respectively.


2016 ◽  
Vol 87 (12) ◽  
pp. 1413-1424 ◽  
Author(s):  
Geoffrey RS Naylor ◽  
Cheryl A Wilson ◽  
Raechel M Laing

The mechanism of dry heat flow through lofty nonwoven structures (i.e. thermal resistance) as occurs in quilts has been established. By contrast, there is a scarcity of published information on the water vapor transport properties. This work explores the thermal and water vapor transport properties of a number of different quilt samples with a focus on identifying fiber type effects. Both commercial product and matched laboratory samples were examined. Steady-state thermal resistance and water vapor resistance measurements confirmed that both properties are primarily determined by sample thickness and are largely independent of fiber type. Experiments were also undertaken to observe transient effects. Test samples were initially equilibrated on a ‘dry’ guarded hotplate (35 ± 0.1℃) in a low relative humidity environment (45%). The relative humidity was then rapidly increased to 85%. Compared to polyester, wool samples exhibited a large reduction in the heat flux required to maintain the hotplate temperature. This transient peak lasted for in excess of 1000 seconds. The magnitude of this transient peak in heat flux was proportional to the quantity of wool in the sample and is believed to be associated with the known exothermic nature of water vapor absorption by wool as relative humidity increases. Based on the published values of the heat of water absorption of wool it is estimated that this additional transient heat source is significant relative to a typical human resting metabolic rate and so the effect may be of practical relevance in the bedding environment.


Sign in / Sign up

Export Citation Format

Share Document