FunRich: An open access standalone functional enrichment and interaction network analysis tool

PROTEOMICS ◽  
2015 ◽  
Vol 15 (15) ◽  
pp. 2597-2601 ◽  
Author(s):  
Mohashin Pathan ◽  
Shivakumar Keerthikumar ◽  
Ching-Seng Ang ◽  
Lahiru Gangoda ◽  
Camelia Y.J. Quek ◽  
...  
2021 ◽  
Author(s):  
Hao Zhang ◽  
Tao Liu

Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear.Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecific gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected.Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay.Histospecific gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecific distribution genes, 17 associated genes were selected:CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.Conclusion:This paper elucidates an effective approach for a new mechanism of HSV-2 infection, and the molecular mechanism of the selected core genes in the process of HSV-2 infection requires future experimental studies.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 771 ◽  
Author(s):  
Nazir M. Khan ◽  
Martha E Diaz-Hernandez ◽  
Steven M. Presciutti ◽  
Hicham Drissi

Intervertebral disc (IVD) degeneration (IDD) is a multifactorial physiological process which is often associated with lower back pain. Previous studies have identified some molecular markers associated with disc degeneration, which despite their significant contributions, have provided limited insight into the etiology of IDD. In this study, we utilized a network medicine approach to uncover potential molecular mediators of IDD. Our systematic analyses of IDD associated with 284 genes included functional annotation clustering, interaction networks, network cluster analysis and Transcription factors (TFs)-target gene network analysis. The functional enrichment and protein–protein interaction network analysis highlighted the role of inflammatory genes and cytokine/chemokine signaling in IDD. Moreover, sub-network analysis identified significant clusters possessing organized networks of 24 cytokine and chemokine genes, which may be considered as key modulators for IDD. The expression of these genes was validated in independent microarray datasets. In addition, the regulatory network analysis identified the role of multiple transcription factors, with RUNX1 being a master regulator in the pathogenesis of IDD. Our analyses highlighted the role of cytokine genes and interacting pathways in IDD and further improved our understanding of the genetic mechanisms underlying IDD.


2009 ◽  
Vol 3 (10) ◽  
pp. 419-421 ◽  
Author(s):  
Sandeep K. Kushwaha ◽  
Madhvi Shakya

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7652 ◽  
Author(s):  
Zhijie Xu ◽  
Xiang Wang ◽  
Xi Chen ◽  
Shuangshuang Zeng ◽  
Long Qian ◽  
...  

Objective Aloperine (ALO), an alkaloid isolated from the leaves of Sophora alopecuroides, has been suggested to exhibit anti-inflammatory and anti-tumor properties and is traditionally used to treat various human diseases, including cancer. However, limited information is available about the mechanisms that determine the anti-tumor activities of ALO. Methods Herein, through comprehensive bioinformatics methods and in vitro functional analyses, we evaluated the detailed anti-tumor mechanisms of ALO. Results Using the databases Bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine and PubChem Project, we identified the potential targets of ALO. A protein–protein interaction network was constructed to determine the relationship among these probable targets. Functional enrichment analysis revealed that ALO is potentially involved in the induction of apoptosis. In addition, molecular docking demonstrated that ALO expectedly docks into the active pocket of the Bcl2 protein, suggesting Bcl2 as a direct target of ALO. Moreover, western blot and qPCR analysis showed that ALO downregulated Bcl2 expression in human glioma cell lines, SK-N-AS and U118. Using flow cytometry methods, we further confirmed that ALO significantly promotes apoptosis in SK-N-AS and U118 cell lines, similar to the effect induced by ABT-737, a well-known Bcl2 inhibitor. In addition, Bcl-2 overexpression could rescue ALO-induced Bcl-2 inhibition and suppress pro-apoptotic effects in glioma cells. Conclusion Taken together, these findings suggest that the natural agent ALO effectively enhances apoptosis by acting as a potential Bcl2 inhibitor in human glioma cells.


2020 ◽  
Vol 20 (9) ◽  
pp. 1051-1060
Author(s):  
Mustafa Ergul ◽  
Fugen Aktan ◽  
Mehmet T. Yildiz ◽  
Yusuf Tutar

Background: Heat shock protein 70 (HSP70) is constitutively expressed in normal cells but aberrantly expressed in several types of tumor cells, helping their survival in extreme conditions. Thus, specific inhibition of HSP70 in tumor cells is a promising strategy in the treatment of cancer. HSP70 has a variety of isoforms in the cellular organelles and form different functions by coordinating and cooperating with cochaperones. Cancer cells overexpress HSPs during cell growth and proliferation and HSP network provides resistance against apoptosis. The present study aimed to evaluate quantitative changes in HSPs- and cancerassociated gene expressions and their interactions in the presence of 2-phenylethyenesulfonamide (PES) in MCF-7 cells. Methods: Antiproliferative activity of PES was evaluated using the XTT assay. Inducible HSP70 (HSP70i) levels in the PES-treated cells were determined using the ELISA kit. PCR Array was performed to assess the HSPs- and cancer-pathway focused gene expression profiling. Gene network analysis was performed using the X2K, yEd (V.3.18.1) programs, and web-based gene list enrichment analysis tool Enrichr. Results: The results demonstrated that PES exposure increased the amount of both HSP70i gene and protein expression surprisingly. However, the expression of HSP70 isoforms as well as other co-chaperones, and 17 cancer-associated genes decreased remarkably as expected. Additionally, interaction network analysis revealed a different mechanism; PES induction of HSP70i employs a cell cycle negative regulator, RB1, which is a tumor suppressor gene. Conclusion: PES treatment inhibited MCF-7 cell proliferation and changed several HSPs- and cancer-related gene expressions along with their interactions through a unique mechanism although it causes an interesting increase at HSP70i gene and protein expressions. RB1 gene expression may play an important role in this effect as revealed by the interaction network analysis.


2021 ◽  
Vol 8 (4) ◽  
pp. 301-310
Author(s):  
Afreen Bhatty ◽  
◽  
Zile Rubab ◽  
Hafiz Syed Mohammad Osama Jafri ◽  
Sheh Zano

<abstract><sec> <title>Objective</title> <p>The aim of the current study was to explore the gene enrichment and dysregulated pathways on the basis of interaction network analysis of <italic>SLC30A8</italic> in type 1 diabetes mellitus (T1DM). <italic>SLC30A8</italic> polymorphism could be characterized as a beneficial tool to identify the interacting gene in developing T1DM.</p> </sec><sec> <title>Materials and methods</title> <p><italic>SLC30A8</italic> interacting protein interaction network was obtained by String Interaction network Version 11.0. Ten proteins were identified interacting with <italic>SLC30A8</italic> and were analysed by protein-protein interaction and enrichment network analysis along with Functional Enrichment analysis tool (FunRich 3.1.3) to map the gene data sets. In entire analysis, FunRich database was used as background against all annotated gene/protein list. Protein-protein interaction (PPI) and enrichment network analysis of the selected protein: <italic>SLC30A8</italic> gene along with gene mapping and pathway enrichment were performed using FunRich 3.1.3 and String Interaction network Version 11.0.</p> </sec><sec> <title>Results</title> <p>Biological pathway grouping displayed enriched proteins in TRAIL signalling pathway (<italic>p</italic> &lt; 0.001). <italic>PTPRN, GAD2</italic> and <italic>TCF7L2</italic> were enriched in TRAIL Signalling pathway when <italic>INS</italic> was made focused gene and directly interacting with <italic>SLC30A8</italic>.</p> </sec><sec> <title>Conclusions</title> <p>TRAIL signalling pathways were enriched in T1DM. Therefore, <italic>SLC30A8</italic> along with <italic>PTPRN, GAD2</italic> and <italic>TCF7L2</italic> involved in TRAIL pathway must be further explored to understand their in vivo role in T1DM.</p> </sec></abstract>


2019 ◽  
Vol 19 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Renu Chaudhary ◽  
Meenakshi Balhara ◽  
Deepak Kumar Jangir ◽  
Mehak Dangi ◽  
Mrridula Dangi ◽  
...  

<P>Background: Protein-Protein interaction (PPI) network analysis of virulence proteins of Aspergillus fumigatus is a prevailing strategy to understand the mechanism behind the virulence of A. fumigatus. The identification of major hub proteins and targeting the hub protein as a new antifungal drug target will help in treating the invasive aspergillosis. </P><P> Materials & Method: In the present study, the PPI network of 96 virulence (drug target) proteins of A. fumigatus were investigated which resulted in 103 nodes and 430 edges. Topological enrichment analysis of the PPI network was also carried out by using STRING database and Network analyzer a cytoscape plugin app. The key enriched KEGG pathway and protein domains were analyzed by STRING.Conclusion:Manual curation of PPI data identified three proteins (PyrABCN-43, AroM-34, and Glt1- 34) of A. fumigatus possessing the highest interacting partners. Top 10% hub proteins were also identified from the network using cytohubba on the basis of seven algorithms, i.e. betweenness, radiality, closeness, degree, bottleneck, MCC and EPC. Homology model and the active pocket of top three hub proteins were also predicted.</P>


2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S20-S21 ◽  
Author(s):  
Akram Safaei ◽  
Mostafa Rezaei Tavirani ◽  
Mona Zamanian Azodi ◽  
Alireza Lashay ◽  
Seyed Farzad Mohammadi ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhongyuan Lin ◽  
Yimin Wang ◽  
Shiqing Lin ◽  
Decheng Liu ◽  
Guohui Mo ◽  
...  

Abstract Background Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS. Methods Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus database. Fifty-three rectal mucosa samples from 27 irritable bowel syndrome with diarrhea (IBS-D) patients and 40 samples from 21 healthy volunteers as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein–protein interaction network was constructed and visualized using STRING database and Cytoscape. Results The microarray analysis demonstrated a subset of genes (CCKBR, CCL13, ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients. Conclusions Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.


2021 ◽  
Vol 28 (1) ◽  
pp. 20-33
Author(s):  
Lydia-Eirini Giannakou ◽  
Athanasios-Stefanos Giannopoulos ◽  
Chrissi Hatzoglou ◽  
Konstantinos I. Gourgoulianis ◽  
Erasmia Rouka ◽  
...  

Haemophilus influenzae (Hi), Moraxella catarrhalis (MorCa) and Pseudomonas aeruginosa (Psa) are three of the most common gram-negative bacteria responsible for human respiratory diseases. In this study, we aimed to identify, using the functional enrichment analysis (FEA), the human gene interaction network with the aforementioned bacteria in order to elucidate the full spectrum of induced pathogenicity. The Human Pathogen Interaction Database (HPIDB 3.0) was used to identify the human proteins that interact with the three pathogens. FEA was performed via the ToppFun tool of the ToppGene Suite and the GeneCodis database so as to identify enriched gene ontologies (GO) of biological processes (BP), cellular components (CC) and diseases. In total, 11 human proteins were found to interact with the bacterial pathogens. FEA of BP GOs revealed associations with mitochondrial membrane permeability relative to apoptotic pathways. FEA of CC GOs revealed associations with focal adhesion, cell junctions and exosomes. The most significantly enriched annotations in diseases and pathways were lung adenocarcinoma and cell cycle, respectively. Our results suggest that the Hi, MorCa and Psa pathogens could be related to the pathogenesis and/or progression of lung adenocarcinoma via the targeting of the epithelial cellular junctions and the subsequent deregulation of the cell adhesion and apoptotic pathways. These hypotheses should be experimentally validated.


Sign in / Sign up

Export Citation Format

Share Document