Strengthening Effect of Multiscale Second Phases in Reduced Activation Ferrite/Martensitic Steel

Author(s):  
Guo-xing Qiu ◽  
Qing Du ◽  
Xiao-ming Li ◽  
Xiang-dong Xing ◽  
Dong-ping Zhan
2006 ◽  
Vol 519-521 ◽  
pp. 35-44 ◽  
Author(s):  
Ai Wu Zhu ◽  
Gary J. Shiflet ◽  
E.A. Jr. Starke

For aerospace structural applications of age-hardenable aluminum at temperatures above 100°C, a primary alloy-design criterion is creep resistance which depends on the strengthening effect and thermal stability of the second phases.. First principle calculations can be used to study fundamental properties of these phases and, therefore, help to identify the desired ones and their precipitate structures. In order to produce the desired phases, which are usually thermodynamically metastable, and to suppress the undesired phases, computational analysis (combining first principle calculations, cluster variation methods and CALPHAD) can assist in identifying beneficial trace additions and deleterious impurities that must be eliminated. This paper, using Al-Cu-Mg as an example, illustrates this approach, which if successful, should shorten the normal alloy development period.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 625 ◽  
Author(s):  
K.B. Nie ◽  
J.G. Han ◽  
K.K. Deng ◽  
X.J. Wang ◽  
C. Xu ◽  
...  

In this study, both AZ91 alloy and nano-SiCp/AZ91 composite were subjected to multi-pass forging under varying passes and temperatures. The microstructure and mechanical properties of the alloy were compared with its composite. After six passes of multi-pass forging at a constant temperature of 400 ℃, complete recrystallization occurred in both the AZ91 alloy and composite. The decrease of temperature and the increase of passes for the multi-pass forging led to further refinement of dynamic recrystallized grains and dynamic precipitation of second phases. The grain size of the nano-SiCp/AZ91 composite was smaller than that of the AZ91 alloy under the same multi-pass forging condition, which indicated that the addition of SiC nanoparticles were beneficial to grain refinement by pinning the grain boundaries. The texture intensity for the 12 passes of multi-pass forging with varying temperatures was increased compared with that after nine passes. The ultimate tensile strength is slightly decreased while the yield strength was increased unobviously for the AZ91 alloy with the decrease of temperature and the increase of the passes for the multi-pass forging. Under the same condition of multi-pass forging, the yield strength of the composite was higher than that of the AZ91 alloy due to the Orowan strengthening effect and grain refinement strengthening resulting from externally applied SiC nanoparticles and internally precipitated second phases. By comparing the microstructure and mechanical properties between the AZ91 alloy and nano-SiCp/AZ91 composite, the strength-toughness properties of the composites at room temperature were affected by the matrix grain size, texture evolution, SiC nanoparticles distribution and the precipitated second phases.


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Author(s):  
W.M. Skiff ◽  
R.W. Carpenter

SiC refractories made by various pressing and sintering methods may contain structural and chemical heterogenieties similar to tljiose reported for Si3N4 base refractories. Although some earlier work on SiC did not reveal second phases, other oxidation experiments showed the reaction to take place heterogeneously, leading to the supposition that such heterogenieties may be present. In this work we examine a typical commercial SiC ceramic to determine the existence of such structural irregularities.


Author(s):  
S. McKernan ◽  
C. B. Carter

The oxidation of natural olivine has previously been performed on bulk samples and the reactions followed by preparation of TEM specimens from the annealed material. These results show that below ∼1000°C hematite and amorphous silica are formed, particularly around dislocations. At higher temperatures magnetite and some enstatite-like phase are formed. In both cases the olivine is left almost totally Fe depleted. By performing the oxidation on characterized thin TEM specimens it is possible to obtain more information on the nucleation and growth of the second phases formed. The conditions in a thin foil, however, are very different from those in the bulk especially with regard to surface effects. The nucleation of precipitates in particular may be expected to occur differently in these thin foils than in the bulk.TEM specimens of natural olivine (approximate composition Mg+Fe+Si2o4) which had been annealed at 1000°C for 1 hr were prepared by mechanical polishing and dimpling, followed by Ar ion milling to perforation. The specimens were characterized in the electron microscope and then heated in air in alumina boats to 900°C for between 30 and 180 minutes.


Author(s):  
Ernest L. Hall ◽  
Shyh-Chin Huang

Addition of interstitial elements to γ-TiAl alloys is currently being explored as a method for improving the properties of these alloys. Previous work in which a number of interstitial elements were studied showed that boron was particularly effective in refining the grain size in castings, and led to enhanced strength while maintaining reasonable ductility. Other investigators have shown that B in γ-TiAl alloys tends to promote the formation of TiB2 as a second phase. In this study, the microstructure of Bcontaining TiAl alloys was examined in detail in order to describe the mechanism by which B alters the structure and properties of these alloys.


Author(s):  
C. M. Sung ◽  
D. B. Williams

Researchers have tended to use high symmetry zone axes (e.g. <111> <114>) for High Order Laue Zone (HOLZ) line analysis since Jones et al reported the origin of HOLZ lines and described some of their applications. But it is not always easy to find HOLZ lines from a specific high symmetry zone axis during microscope operation, especially from second phases on a scale of tens of nanometers. Therefore it would be very convenient if we can use HOLZ lines from low symmetry zone axes and simulate these patterns in order to measure lattice parameter changes through HOLZ line shifts. HOLZ patterns of high index low symmetry zone axes are shown in Fig. 1, which were obtained from pure Al at -186°C using a double tilt cooling holder. Their corresponding simulated HOLZ line patterns are shown along with ten other low symmetry orientations in Fig. 2. The simulations were based upon kinematical diffraction conditions.


Author(s):  
C.M. Sung ◽  
K.J. Ostreicher ◽  
M.L. Huckabee ◽  
S.T. Buljan

A series of binary oxides and SiC whisker reinforced composites both having a matrix composed of an α-(Al, R)2O3 solid solution (R: rare earth) have been studied by analytical electron microscopy (AEM). The mechanical properties of the composites as well as crystal structure, composition, and defects of both second phases and the matrix were investigated. The formation of various second phases, e.g. garnet, β-Alumina, or perovskite structures in the binary Al2O3-R2O3 and the ternary Al2O3-R2O3-SiC(w) systems are discussed.Sections of the materials having thicknesses of 100 μm - 300 μm were first diamond core drilled. The discs were then polished and dimpled. The final step was ion milling with Ar+ until breakthrough occurred. Samples prepared in this manner were then analyzed using the Philips EM400T AEM. The low-Z energy dispersive X-ray spectroscopy (EDXS) data were obtained and correlated with convergent beam electron diffraction (CBED) patterns to identify phase compositions and structures. The following EDXS parameters were maintained in the analyzed areas: accelerating voltage of 120 keV, sample tilt of 12° and 20% dead time.


Author(s):  
H. Lin ◽  
D. P. Pope

During a study of mechanical properties of recrystallized B-free Ni3Al single crystals, regularly spaced parallel traces within individual grains were discovered on the surfaces of thin recrystallized sheets, see Fig. 1. They appeared to be slip traces, but since we could not find similar observations in the literature, a series of experiments was performed to identify them. We will refer to them “traces”, because they contain some, if not all, of the properties of slip traces. A variety of techniques, including the Electron Backscattering Pattern (EBSP) method, was used to ascertain the composition, geometry, and crystallography of these traces. The effect of sample thickness on their formation was also investigated.In summary, these traces on the surface of recrystallized Ni3Al have the following properties:1.The chemistry and crystallographic orientation of the traces are the same as the bulk. No oxides or other second phases were observed.2.The traces are not grooves caused by thermal etching at previous locations of grain boundaries.3.The traces form after recrystallization (because the starting Ni3Al is a single crystal).4.For thicknesses between 50 μm and 720 μm, the density of the traces increases as the sample thickness decreases. Only one set of “protrusion-like” traces is visible in a given grain on the thicker samples, but multiple sets of “cliff-like” traces are visible on the thinner ones (See Fig. 1 and Fig. 2).5.They are linear and parallel to the traces of {111} planes on the surface, see Fig. 3.6.Some of the traces terminate within the interior of the grains, and the rest of them either terminate at or are continuous across grain boundaries. The portion of latter increases with decreasing thickness.7.The grain size decreases with decreasing thickness, the decrease is more pronounced when the grain size is comparable with the thickness, Fig. 4.8.Traces also formed during the recrystallization of cold-rolled polycrystalline Cu thin sheets, Fig. 5.


Sign in / Sign up

Export Citation Format

Share Document