Design of Orthogonal Pairs for Protein Translation: Selection Systems for Genetically Encoding Noncanonical Amino Acids in E. coli

Author(s):  
Jelena Jaric ◽  
Nediljko Budisa
2020 ◽  
Vol 9 (11) ◽  
pp. 3052-3066
Author(s):  
Meritxell Galindo Casas ◽  
Patrick Stargardt ◽  
Juergen Mairhofer ◽  
Birgit Wiltschi

2021 ◽  
Author(s):  
Isabella Tolle ◽  
Stefan Oehm ◽  
Michael Georg Hoesl ◽  
Christin Treiber-Kleinke ◽  
Lauri Peil ◽  
...  

ABSTRACTBillions of years of evolution have produced only slight variations in the standard genetic code, and the number and identity of proteinogenic amino acids have remained mostly consistent throughout all three domains of life. These observations suggest a certain rigidity of the genetic code and prompt musings as to the origin and evolution of the code. Here we conducted an adaptive laboratory evolution (ALE) to push the limits of the code restriction, by evolving Escherichia coli to fully replace tryptophan, thought to be the latest addition to the genetic code, with the analog L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa). We identified an overshooting of the stress response system to be the main inhibiting factor for limiting ancestral growth upon exposure to β-(thieno[3,2-b]pyrrole ([3,2]Tp), a metabolic precursor of [3,2]Tpa, and Trp limitation. During the ALE, E. coli was able to “calm down” its stress response machinery, thereby restoring growth. In particular, the inactivation of RpoS itself, the master regulon of the general stress response, was a key event during the adaptation. Knocking out the rpoS gene in the ancestral background independent of other changes conferred growth on [3,2]Tp. Our results add additional evidence that frozen regulatory constraints rather than a rigid protein translation apparatus are Life’s gatekeepers of the canonical amino acid repertoire. This information will not only enable us to design enhanced synthetic amino acid incorporation systems but may also shed light on a general biological mechanism trapping organismal configurations in a status quo.SIGNIFICANCE STATEMENTThe (apparent) rigidity of the genetic code, as well as its universality, have long since ushered explorations into expanding the code with synthetic, new-to-nature building blocks and testing its boundaries. While nowadays even proteome-wide incorporation of synthetic amino acids has been reported on several occasions1–3, little is known about the underlying mechanisms.We here report ALE with auxotrophic E. coli that yielded successful proteome-wide replacement of Trp by its synthetic analog [3,2]Tpa accompanied with the selection for loss of RpoS4 function. Such laboratory domestication of bacteria by the acquisition of rpoS mitigation mutations is beneficial not only to overcome the stress of nutrient (Trp) starvation but also to evolve the paths to use environmental xenobiotics (e.g. [3,2]Tp) as essential nutrients for growth.We pose that regulatory constraints rather than a rigid and conserved protein translation apparatus are Life’s gatekeepers of the canonical amino acid repertoire (at least where close structural analogs are concerned). Our findings contribute a step towards understanding possible environmental causes of genetic changes and their relationship to evolution.Our evolved strain affords a platform for homogenous protein labeling with [3,2]Tpa as well as for the production of biomolecules5, which are challenging to synthesize chemically. Top-down synthetic biology will also benefit greatly from breaking through the boundaries of the frozen bacterial genetic code, as this will enable us to begin creating synthetic cells capable to utilize an expanded range of substrates essential for life.


2021 ◽  
Author(s):  
Katherine T Grasso ◽  
Soumya Jyoti Singha Roy ◽  
Megan Jin Rae Yeo ◽  
Chintan Soni ◽  
Arianna O Osgood ◽  
...  

The E. coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNAEcTyr pair offers an attractive platform to genetically encode new noncanonical amino acids (ncAA) in eukaryotes. However, challenges associated with a eukaryotic selection system, which is needed for its engineering, has impeded its success in the past. Recently, we showed that EcTyrRS can be engineered using a facile E. coli based selection system, in a strain where the endogenous tyrosyl pair has been substituted with an archaeal counterpart. However, a significant cross-reactivity between the UAG-suppressing tRNACUAEcTyr and the bacterial glutaminyl-tRNA synthetase limited the scope of this strategy, preventing the selection of moderately active EcTyrRS mutants. Here we report an engineered tRNACUAEcTyr that overcomes this cross-reactivity. Optimized selection systems using this tRNA enabled efficient enrichment of both strongly and weakly active ncAA-selective EcTyrRS mutants. We also developed a wide-dynamic range (WiDR) antibiotic selection to further enhance the activities of the weaker first-generation EcTyrRS mutants. We demonstrated the utility of our platform by developing several new EcTyrRS mutants that efficiently incorporate useful ncAAs in mammalian cells, including photo-affinity probes, bioconjugation handles, and a non-hydrolyzable mimic of phosphotyrosine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huawei Yi ◽  
Jing Zhang ◽  
Famin Ke ◽  
Xiurong Guo ◽  
Jian Yang ◽  
...  

Incorporation of noncanonical amino acids (ncAAs) into proteins has been proven to be a powerful tool to manipulate protein structure and function, and to investigate many biological processes. Improving the yields of ncAA-containing proteins is of great significance in industrial-scale applications. Escherichia coli C321.ΔA was generated by the replacement of all known amber codons and the deletion of RF1 in the genome and has been proven to be an ideal host for ncAA-containing protein expression using genetic code expansion. In this study, we investigated the transcriptome and proteome profiles of this first codon reassignment strain and found that some functions and metabolic pathways were differentially expressed when compared with those of its parent strain. Genes involved in carbohydrate and energy metabolism were remarkably downregulated. Our results may provide important clues about the growth defects in E. coli C321.ΔA. Furthermore, we improved the yields of ncAA-containing proteins in E. coli C321.ΔA by integrating the T7 RNA polymerase system.


2019 ◽  
Author(s):  
K.A. Potts ◽  
J.T. Stieglitz ◽  
M. Lei ◽  
J.A. Van Deventer

AbstractThe ability to genetically encode noncanonical amino acids (ncAAs) within proteins supports a growing number of applications ranging from fundamental biological studies to enhancing the properties of biological therapeutics. Currently, our quantitative understanding of ncAA incorporation systems is confounded by the diverse set of characterization and analysis approaches used to quantify ncAA incorporation events. While several effective reporter systems support such measurements, it is not clear how quantitative results from different reporters relate to one another, or which details influence measurements most strongly. Here, we evaluate the quantitative performance of single-fluorescent protein reporters, dual-fluorescent protein reporters, and cell surface displayed protein reporters of ncAA insertion in response to the TAG (amber) codon in yeast. While different reporters support varying levels of apparent readthough efficiencies, flow cytometry-based evaluations with dual reporters yielded measurements exhibiting consistent quantitative trends and precision across all evaluated conditions. Further investigations of dual-fluorescent protein reporter architecture revealed that quantitative outputs are influenced by stop codon location and N-and C-terminal fluorescent protein identity. Both dual-fluorescent protein reporters and a “drop-in” version of yeast display support quantification of ncAA incorporation in several single-gene knockout strains, revealing strains that enhance ncAA incorporation efficiency without compromising fidelity. Our studies reveal critical details regarding reporter system performance in yeast and how to effectively deploy such reporters. These findings have substantial implications for how to engineer ncAA incorporation systems—and protein translation apparatuses—to better accommodate alternative genetic codes for expanding the chemical diversity of biosynthesized proteins.Design, System, Application ParagraphOn earth, the genetic code provides nearly invariant instructions for generating the proteins present in all organisms using 20 primary amino acid building blocks. Scientists and engineers have long recognized the potential power of altering the genetic code to introduce amino acids that enhance the chemical versatility of proteins. Proteins containing such “noncanonical amino acids” (ncAAs) can be used to elucidate basic biological phenomena, discover new therapeutics, or engineer new materials. However, tools for measuring ncAA incorporation during protein translation (reporters) exhibit highly variable properties, severely limiting our ability to engineer improved ncAA incorporation systems. In this work, we sought to understand what properties of these reporters affect measurements of ncAA incorporation events. Using a series of ncAA incorporation systems in yeast, we evaluated reporter architecture, measurement techniques, and alternative data analysis methods. We identified key factors contributing to quantification of ncAA incorporation in all of these categories and demonstrated the immediate utility of our approach in identifying genomic knockouts that enhance ncAA incorporation efficiency. Our findings have important implications for how to evolve cells to better accommodate alternative genetic codes.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rajdeep Banerjee ◽  
Erin Weisenhorn ◽  
Kevin J. Schwartz ◽  
Kevin S. Myers ◽  
Jeremy D. Glasner ◽  
...  

ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.


2019 ◽  
Vol 20 (18) ◽  
pp. 4416 ◽  
Author(s):  
Lara Console ◽  
Maria Tolomeo ◽  
Matilde Colella ◽  
Maria Barile ◽  
Cesare Indiveri

Background: the SLC52A2 gene encodes for the riboflavin transporter 2 (RFVT2). This transporter is ubiquitously expressed. It mediates the transport of Riboflavin across cell membranes. Riboflavin plays a crucial role in cells since its biologically active forms, FMN and FAD, are essential for the metabolism of carbohydrates, amino acids, and lipids. Mutation of the Riboflavin transporters is a risk factor for anemia, cancer, cardiovascular disease, neurodegeneration. Inborn mutations of SLC52A2 are associated with Brown-Vialetto-van Laere syndrome, a rare neurological disorder characterized by infancy onset. In spite of the important metabolic and physio/pathological role of this transporter few data are available on its function and regulation. Methods: the human recombinant RFVT2 has been overexpressed in E. coli, purified and reconstituted into proteoliposomes in order to characterize its activity following the [3H]Riboflavin transport. Results: the recombinant hRFVT2 showed a Km of 0.26 ± 0.07 µM and was inhibited by lumiflavin, FMN and Mg2+. The Riboflavin uptake was also regulated by Ca2+. The native protein extracted from fibroblast and reconstituted in proteoliposomes also showed inhibition by FMN and lumiflavin. Conclusions: proteoliposomes represent a suitable model to assay the RFVT2 function. It will be useful for screening the mutation of RFVT2.


Author(s):  
Binbin Hu ◽  
Na Song ◽  
Yawei Cao ◽  
Mingming Li ◽  
Xin Liu ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 926
Author(s):  
Maria C. Martins ◽  
Susana F. Fernandes ◽  
Bruno A. Salgueiro ◽  
Jéssica C. Soares ◽  
Célia V. Romão ◽  
...  

Flavodiiron proteins (FDPs) are a family of modular and soluble enzymes endowed with nitric oxide and/or oxygen reductase activities, producing N2O or H2O, respectively. The FDP from Escherichia coli, which, apart from the two core domains, possesses a rubredoxin-like domain at the C-terminus (therefore named flavorubredoxin (FlRd)), is a bona fide NO reductase, exhibiting O2 reducing activity that is approximately ten times lower than that for NO. Among the flavorubredoxins, there is a strictly conserved amino acids motif, -G[S,T]SYN-, close to the catalytic diiron center. To assess its role in FlRd’s activity, we designed several site-directed mutants, replacing the conserved residues with hydrophobic or anionic ones. The mutants, which maintained the general characteristics of the wild type enzyme, including cofactor content and integrity of the diiron center, revealed a decrease of their oxygen reductase activity, while the NO reductase activity—specifically, its physiological function—was almost completely abolished in some of the mutants. Molecular modeling of the mutant proteins pointed to subtle changes in the predicted structures that resulted in the reduction of the hydration of the regions around the conserved residues, as well as in the elimination of hydrogen bonds, which may affect proton transfer and/or product release.


Sign in / Sign up

Export Citation Format

Share Document