scholarly journals Measuring Drp1 Activity in Mitochondrial Fission In Vivo

Author(s):  
Di Hu ◽  
Xin Qi
Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1202
Author(s):  
Bojjibabu Chidipi ◽  
Syed Islamuddin Shah ◽  
Michelle Reiser ◽  
Manasa Kanithi ◽  
Amanda Garces ◽  
...  

In the heart, mitochondrial homeostasis is critical for sustaining normal function and optimal responses to metabolic and environmental stressors. Mitochondrial fusion and fission are thought to be necessary for maintaining a robust population of mitochondria, and disruptions in mitochondrial fission and/or fusion can lead to cellular dysfunction. The dynamin-related protein (DRP1) is an important mediator of mitochondrial fission. In this study, we investigated the direct effects of the micronutrient retinoid all-trans retinoic acid (ATRA) on the mitochondrial structure in vivo and in vitro using Western blot, confocal, and transmission electron microscopy, as well as mitochondrial network quantification using stochastic modeling. Our results showed that ATRA increases DRP1 protein levels, increases the localization of DRP1 to mitochondria in isolated mitochondrial preparations. Our results also suggested that ATRA remodels the mitochondrial ultrastructure where the mitochondrial area and perimeter were decreased and the circularity was increased. Microscopically, mitochondrial network remodeling is driven by an increased rate of fission over fusion events in ATRA, as suggested by our numerical modeling. In conclusion, ATRA results in a pharmacologically mediated increase in the DRP1 protein. It also results in the modulation of cardiac mitochondria by promoting fission events, altering the mitochondrial network, and modifying the ultrastructure of mitochondria in the heart.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mitsuo Kato ◽  
Maryam Abdollahi ◽  
Ragadeepthi Tunduguru ◽  
Walter Tsark ◽  
Zhuo Chen ◽  
...  

AbstractDiabetic kidney disease (DKD) is a major complication of diabetes. Expression of members of the microRNA (miRNA) miR-379 cluster is increased in DKD. miR-379, the most upstream 5′-miRNA in the cluster, functions in endoplasmic reticulum (ER) stress by targeting EDEM3. However, the in vivo functions of miR-379 remain unclear. We created miR-379 knockout (KO) mice using CRISPR-Cas9 nickase and dual guide RNA technique and characterized their phenotype in diabetes. We screened for miR-379 targets in renal mesangial cells from WT vs. miR-379KO mice using AGO2-immunopreciptation and CLASH (cross-linking, ligation, sequencing hybrids) and identified the redox protein thioredoxin and mitochondrial fission-1 protein. miR-379KO mice were protected from features of DKD as well as body weight loss associated with mitochondrial dysfunction, ER- and oxidative stress. These results reveal a role for miR-379 in DKD and metabolic processes via reducing adaptive mitophagy. Strategies targeting miR-379 could offer therapeutic options for DKD.


Diabetologia ◽  
2021 ◽  
Author(s):  
Yukina Takeichi ◽  
Takashi Miyazawa ◽  
Shohei Sakamoto ◽  
Yuki Hanada ◽  
Lixiang Wang ◽  
...  

Abstract Aims/hypothesis Mitochondria are highly dynamic organelles continuously undergoing fission and fusion, referred to as mitochondrial dynamics, to adapt to nutritional demands. Evidence suggests that impaired mitochondrial dynamics leads to metabolic abnormalities such as non-alcoholic steatohepatitis (NASH) phenotypes. However, how mitochondrial dynamics are involved in the development of NASH is poorly understood. This study aimed to elucidate the role of mitochondrial fission factor (MFF) in the development of NASH. Methods We created mice with hepatocyte-specific deletion of MFF (MffLiKO). MffLiKO mice fed normal chow diet (NCD) or high-fat diet (HFD) were evaluated for metabolic variables and their livers were examined by histological analysis. To elucidate the mechanism of development of NASH, we examined the expression of genes related to endoplasmic reticulum (ER) stress and lipid metabolism, and the secretion of triacylglycerol (TG) using the liver and primary hepatocytes isolated from MffLiKO and control mice. Results MffLiKO mice showed aberrant mitochondrial morphologies with no obvious NASH phenotypes during NCD, while they developed full-blown NASH phenotypes in response to HFD. Expression of genes related to ER stress was markedly upregulated in the liver from MffLiKO mice. In addition, expression of genes related to hepatic TG secretion was downregulated, with reduced hepatic TG secretion in MffLiKO mice in vivo and in primary cultures of MFF-deficient hepatocytes in vitro. Furthermore, thapsigargin-induced ER stress suppressed TG secretion in primary hepatocytes isolated from control mice. Conclusions/interpretation We demonstrated that ablation of MFF in liver provoked ER stress and reduced hepatic TG secretion in vivo and in vitro. Moreover, MffLiKO mice were more susceptible to HFD-induced NASH phenotype than control mice, partly because of ER stress-induced apoptosis of hepatocytes and suppression of TG secretion from hepatocytes. This study provides evidence for the role of mitochondrial fission in the development of NASH. Graphical abstract


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Qiongxia Deng ◽  
Ruowei Wen ◽  
Sirui Liu ◽  
Xiaoqiu Chen ◽  
Shicong Song ◽  
...  

Abstract Excessive mitochondrial fission plays a key role in podocyte injury in diabetic kidney disease (DKD), and long noncoding RNAs (lncRNAs) are important in the development and progression of DKD. However, lncRNA regulation of mitochondrial fission in podocytes is poorly understood. Here, we studied lncRNA maternally expressed gene 3 (Meg3) in mitochondrial fission in vivo and in vitro using human podocytes and Meg3 podocyte-specific knockdown mice. Expression of lncRNA Meg3 in STZ-induced diabetic mice was higher, and correlated with the number of podocytes. Excessive mitochondrial fission of podocytes and renal histopathological and physiological parameters were improved in podocyte-specific Meg3 knockdown diabetic mice. Elongated mitochondria with attenuated podocyte damage, as well as mitochondrial translocation of dynamin-related protein 1 (Drp1), were decreased in Meg3 knockout podocytes. By contrast, increased fragmented mitochondria, podocyte injury, and Drp1 expression and phosphorylation were observed in lncRNA Meg3-overexpressing podocytes. Treatment with Mdivi1 significantly blunted more fragmented mitochondria and reduced podocyte injury in lncRNA Meg3-overexpressing podocytes. Finally, fragmented mitochondria and Drp1 mitochondrial translocation induced by high glucose were reduced following treatment with Mdivi1. Our data show that expression of Meg3 in podocytes in both human cells and diabetic mice was higher, which regulates mitochondrial fission and contributes to podocyte injury through increased Drp1 and its translocation to mitochondria.


2019 ◽  
Vol 2 (4) ◽  
pp. e201900308 ◽  
Author(s):  
Shun Nagashima ◽  
Keisuke Takeda ◽  
Nobuhiko Ohno ◽  
Satoshi Ishido ◽  
Motohide Aoki ◽  
...  

Mitochondrial abnormalities are associated with developmental disorders, although a causal relationship remains largely unknown. Here, we report that increased oxidative stress in neurons by deletion of mitochondrial ubiquitin ligase MITOL causes a potential neuroinflammation including aberrant astrogliosis and microglial activation, indicating that mitochondrial abnormalities might confer a risk for inflammatory diseases in brain such as psychiatric disorders. A role of MITOL in both mitochondrial dynamics and ER-mitochondria tethering prompted us to characterize three-dimensional structures of mitochondria in vivo. In MITOL-deficient neurons, we observed a significant reduction in the ER-mitochondria contact sites, which might lead to perturbation of phospholipids transfer, consequently reduce cardiolipin biogenesis. We also found that branched large mitochondria disappeared by deletion of MITOL. These morphological abnormalities of mitochondria resulted in enhanced oxidative stress in brain, which led to astrogliosis and microglial activation partly causing abnormal behavior. In conclusion, the reduced ER-mitochondria tethering and excessive mitochondrial fission may trigger neuroinflammation through oxidative stress.


2019 ◽  
Author(s):  
Annie Lee ◽  
Chandana Kondapalli ◽  
Daniel M. Virga ◽  
Tommy L. Lewis ◽  
So Yeon Koo ◽  
...  

AbstractDuring the early stages of Alzheimer’s disease (AD) in both mouse models and human patients, soluble forms of Amyloid-β1-42 oligomers (Aβ42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble Aβ plaques. We observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites in the hAPPSWE,IND transgenic AD mouse model (J20), corresponding to the dendritic domain receiving presynaptic inputs from the entorhinal cortex and where the earliest synaptic loss is detected in vivo. We also observed significant loss of mitochondrial biomass in human neurons derived from a new model of human ES cells where CRISPR-Cas9-mediated genome engineering was used to introduce the ‘Swedish’ mutation bi-allelically (APPSWE/SWE). Recent work uncovered that Aβ42o mediates synaptic loss by over-activating the CAMKK2-AMPK kinase dyad, and that AMPK is a central regulator of mitochondria homeostasis in non-neuronal cells. Here, we demonstrate that Aβ42o-dependent over-activation of CAMKK2-AMPK mediates synaptic loss through coordinated MFF-dependent mitochondrial fission and ULK2-dependent mitophagy in dendrites of PNs. We also found that the ability of Aβ42o-dependent mitochondrial remodeling to trigger synaptic loss requires the ability of AMPK to phosphorylate Tau on Serine 262. Our results uncover a unifying stress-response pathway triggered by Aβo and causally linking structural remodeling of dendritic mitochondria to synaptic loss.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Yoshiyuki Ikeda ◽  
Junichi Sadoshima

Fission and fusion affect mitochondrial turnover in part by modulating mitophagy. This study aimed to clarify the role of mitochondrial fission in regulating cardiac function and autophagy in the heart. Dynamin-related protein 1 (Drp-1) plays an essential role in mediating mitochondrial fission. Therefore, we generated cardiac specific Drp-1 KO mice and utilized cultured cardiomyocytes transduced with adenovirus harboring short hairpin Drp-1 (Ad-shDrp-1) to test the effect of Drp-1 disruption both in vivo and in vitro. In Drp-1 KO hearts we observed a significantly greater mitochondrial mass ratio compared to control, as assessed by electron microscopy (Drp-1 KO: 3.57 ± 1.38, control: 1.18 ± 0.31, P<0.05). Mitochondrial ATP content was significantly lower (0.70 ± 0.07 vs 1.03 ± 0.10, P<0.05), while mitochondrial swelling was significantly greater (% decrease in absorbance; 8.01 ± 1.99 vs 2.01 ± 0.58, P<0.05) in Drp-1 KO hearts versus control. Mitochondrial membrane potential, assessed by JC-1 staining, was significantly reduced in myocytes with knockdown of Drp-1. Taken together, these results suggest that inhibition of fission causes mitochondrial dysfunction. We also examined the effect of Drp-1 depletion on autophagy. We found that the amount of LC-3 II was significantly less (0.47 ± 0.16 vs 1.32 ±0.34, P<0.05), whereas p62 expression was significantly greater (1.14 ± 0.16 vs 0.16 ± 0.06, P<0.01) in Drp-1 KO hearts compared to control. The number of LC3 dots in Ad-shDrp-1 transduced myocytes was lower than that of sh-scramble treatment. We investigated apoptosis and found that the amount of cleaved caspase-3 (0.62 ± 0.24 vs 0.18 ± 0.04, P<0.05) and the number of TUNEL positive cells (0.22 ± 0.12 vs 0.03 ± 0.06%, P<0.01) were higher in Drp-1 KO versus control hearts. Cardiac systolic function was reduced (ejection fraction; 44.5 ± 6.3 vs 85.4 ± 5.7%, P<0.01) and LVW/tibia length was greater (4.48 ± 0.38 vs 3.84 ± 0.58, P<0.05) in Drp-1 KO mice compared to control. Finally, we observed that the survival rate of Drp-1 KO mice was significantly reduced compared to control mice. Our results demonstrate that inhibition of mitochondrial fission via disruption of Drp-1 inhibits autophagy and causes mitochondrial dysfunction, thereby promoting cardiomyopathy.


2020 ◽  
Author(s):  
Weifeng Huang ◽  
Qin Tan ◽  
Yong Guo ◽  
Yongmei Cao ◽  
Jiawei Shang ◽  
...  

Abstract BackgroundAmong several leading cardiovascular disorders, ischemia-reperfusion (I/R) injury causes severe manifestations including acute heart failure, inflammation, and systemic dysfunction. Recently, there has been increasing evidence suggesting that alterations in mitochondrial morphology play a role in the prognoses of cardiac disorders. Long non-coding RNAs (lncRNAs) form major regulatory networks to modify gene transcription and translation. While several roles of lncRNAs have been explored in cancer and tumor biology, their implications on mitochondrial morphology and functions remain to be elucidated. MethodsThe functional roles of ZFP36L2 and lncRNA PVT1 were determined by a series of cardiomyocyte hypoxia/ reoxygenation (H/R) in vitro and myocardial I/R injury in vivo experiments. Quantitative Reverse transcription-polymerase chain reaction (qRT-PCR) and western blot analysis were used to detect the mRNA levels of ZFP36L2 and mitochondrial fission and fusion markers in the myocardial tissues and cardiomyocyte. Cardiac function was determined by immunohistochemistry, H&E, Masson’s staining and echocardiogram. Ultrastructural analysis of mitochondrial fission was performed using transmission electron microscopy (TEM). The mechanistic model of PVT1 with ZFP36L2 and miR-21-5p with MARCH5 was detected by subcellular fraction, RNA pull down, FISH, and luciferase reporter assays.ResultsIn this study, we report a novel regulatory axis involving lncRNA PVT1, microRNA miR-21-5p, and E3 ubiquitin ligase MARCH5, which alters mitochondrial morphology during myocardial I/R injury. Using an in vivo I/R injury mouse model and in vitro cardiomyocyte H/R model, we observed that zinc finger protein ZFP36L2 directly associated with PVT1 and altered mitochondrial fission and fusion. PVT1 also interacted with miR-21-5p and suppressed its expression and activity. Furthermore, we identified MARCH5 as a modifier of miR-21-5p, and expression of MARCH5 and its effect on mitochondrial fission and fusion were directly proportional to PVT1 expression during H/R injury. ConclusionsOur findings demonstrated that manipulation of PVT1-miR-21-5p-MARCH5-mediated mitochondrial fission and fusion via ZFP36L2 may be a novel therapeutic approach to regulate myocardial I/R injury.


Endocrinology ◽  
2018 ◽  
Vol 159 (9) ◽  
pp. 3245-3256 ◽  
Author(s):  
Thomas G Hennings ◽  
Deeksha G Chopra ◽  
Elizabeth R DeLeon ◽  
Halena R VanDeusen ◽  
Hiromi Sesaki ◽  
...  

Abstract Mitochondria are dynamic organelles that undergo frequent fission and fusion events. Mitochondrial fission is required for ATP production, the tricarboxylic acid cycle, and processes beyond metabolism in a cell-type specific manner. Ex vivo and cell line studies have demonstrated that Drp1, a central regulator of mitochondrial fission, is required for glucose-stimulated insulin secretion (GSIS) in pancreatic β cells. Herein, we set out to interrogate the role of Drp1 in β-cell insulin secretion in vivo. We generated β-cell–specific Drp1 knockout (KO) mice (Drp1β-KO) by crossing a conditional allele of Drp1 to Ins1cre mice, in which Cre recombinase replaces the coding region of the Ins1 gene. Drp1β-KO mice were glucose intolerant due to impaired GSIS but did not progress to fasting hyperglycemia as adults. Despite markedly abnormal mitochondrial morphology, Drp1β-KO islets exhibited normal oxygen consumption rates and an unchanged glucose threshold for intracellular calcium mobilization. Instead, the most profound consequences of β-cell Drp1 deletion were impaired second-phase insulin secretion and impaired glucose-stimulated amplification of insulin secretion. Our data establish Drp1 as an important regulator of insulin secretion in vivo and demonstrate a role for Drp1 in metabolic amplification and calcium handling without affecting oxygen consumption.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Myoung Sup Shim ◽  
Yuji Takihara ◽  
Keun-Young Kim ◽  
Takeshi Iwata ◽  
Beatrice Y. J. T. Yue ◽  
...  

Abstract Mutations in optineurin (OPTN) are linked to the pathology of primary open angle glaucoma (POAG) and amyotrophic lateral sclerosis. Emerging evidence indicates that OPTN mutation is involved in accumulation of damaged mitochondria and defective mitophagy. Nevertheless, the role played by an OPTN E50K mutation in the pathogenic mitochondrial mechanism that underlies retinal ganglion cell (RGC) degeneration in POAG remains unknown. We show here that E50K expression induces mitochondrial fission-mediated mitochondrial degradation and mitophagy in the axons of the glial lamina of aged E50K−tg mice in vivo. While E50K activates the Bax pathway and oxidative stress, and triggers dynamics alteration-mediated mitochondrial degradation and mitophagy in RGC somas in vitro, it does not affect transport dynamics and fission of mitochondria in RGC axons in vitro. These results strongly suggest that E50K is associated with mitochondrial dysfunction in RGC degeneration in synergy with environmental factors such as aging and/or oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document