Lysine Acetylation Stoichiometry Analysis at the Proteome Level

Author(s):  
Jeovanis Gil ◽  
Sergio Encarnación-Guevara
Author(s):  
M C Rodriguez ◽  
D Mehta ◽  
M Tan ◽  
R G Uhrig

ABSTRACT Abiotic stresses such as drought result in large annual economic losses around the world. As sessile organisms, plants cannot escape the environmental stresses they encounter, but instead must adapt to survive. Studies investigating plant responses to osmotic and/or salt stress have largely focused on short-term systemic responses, leaving our understanding of intermediate to longer-term adaptation (24 h - days) lacking. In addition to protein abundance and phosphorylation changes, evidence suggests reversible lysine acetylation may also be important for abiotic stress responses. Therefore, to characterize the protein-level effects of osmotic and salt stress, we undertook a label-free proteomic analysis of Arabidopsis thaliana roots exposed to 300 mM Mannitol and 150 mM NaCl for 24 h. We assessed protein phosphorylation, lysine acetylation and changes in protein abundance, detecting significant changes in 245, 35 and 107 total proteins, respectively. Comparison with available transcriptome data indicates that transcriptome- and proteome-level changes occur in parallel, while PTMs do not. Further, we find significant changes in PTMs and protein abundance involve different proteins from the same networks, indicating a multifaceted regulatory approach to prolonged osmotic and salt stress. In particular, we find extensive protein-level changes involving sulphur metabolism under both osmotic and salt conditions as well as changes in protein kinases and transcription factors that may represent new targets for drought stress signaling. Collectively, we find that protein-level changes continue to occur in plant roots 24 h from the onset of osmotic and salt stress and that these changes differ across multiple proteome levels.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


2019 ◽  
Vol 26 (36) ◽  
pp. 6544-6563
Author(s):  
Victoria Lucia Alonso ◽  
Luis Emilio Tavernelli ◽  
Alejandro Pezza ◽  
Pamela Cribb ◽  
Carla Ritagliati ◽  
...  

Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery because the miss-regulation of human bromodomains was discovered to be involved in the development of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain- containing proteins in protozoa, offering a new opportunity for the development of antiparasitic drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains were classified in eight groups based on sequence similarity but parasitic bromodomains are very divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize the myriad of small-molecules under study to treat different pathologies and which of them have been tested in trypanosomatids and other protozoa. All the information available led us to propose that T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules to inhibit them should be empowered.


Author(s):  
Rocco J. Rotello ◽  
Timothy D. Veenstra

: In the current omics-age of research, major developments have been made in technologies that attempt to survey the entire repertoire of genes, transcripts, proteins, and metabolites present within a cell. While genomics has led to a dramatic increase in our understanding of such things as disease morphology and how organisms respond to medications, it is critical to obtain information at the proteome level since proteins carry out most of the functions within the cell. The primary tool for obtaining proteome-wide information on proteins within the cell is mass spectrometry (MS). While it has historically been associated with the protein identification, developments over the past couple of decades have made MS a robust technology for protein quantitation as well. Identifying quantitative changes in proteomes is complicated by its dynamic nature and the inability of any technique to guarantee complete coverage of every protein within a proteome sample. Fortunately, the combined development of sample preparation and MS methods have made it capable to quantitatively compare many thousands of proteins obtained from cells and organisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Hsin Chiu ◽  
Christopher B. Medina ◽  
Catherine A. Doyle ◽  
Ming Zhou ◽  
Adishesh K. Narahari ◽  
...  

AbstractActivation of Pannexin 1 (PANX1) ion channels causes release of intercellular signaling molecules in a variety of (patho)physiological contexts. PANX1 can be activated by G protein-coupled receptors (GPCRs), including α1-adrenergic receptors (α1-ARs), but how receptor engagement leads to channel opening remains unclear. Here, we show that GPCR-mediated PANX1 activation can occur via channel deacetylation. We find that α1-AR-mediated activation of PANX1 channels requires Gαq but is independent of phospholipase C or intracellular calcium. Instead, α1-AR-mediated PANX1 activation involves RhoA, mammalian diaphanous (mDia)-related formin, and a cytosolic lysine deacetylase activated by mDia – histone deacetylase 6. HDAC6 associates with PANX1 and activates PANX1 channels, even in excised membrane patches, suggesting direct deacetylation of PANX1. Substitution of basally-acetylated intracellular lysine residues identified on PANX1 by mass spectrometry either prevents HDAC6-mediated activation (K140/409Q) or renders the channels constitutively active (K140R). These data define a non-canonical RhoA-mDia-HDAC6 signaling pathway for GαqPCR activation of PANX1 channels and uncover lysine acetylation-deacetylation as an ion channel silencing-activation mechanism.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 311
Author(s):  
Indu Choudhary ◽  
Duhyeon Hwang ◽  
Jinho Chae ◽  
Wonduk Yoon ◽  
Changkeun Kang ◽  
...  

Jellyfish venom is well known for its local skin toxicities and various lethal accidents. The main symptoms of local jellyfish envenomation include skin lesions, burning, prickling, stinging pain, red, brown, or purplish tracks on the skin, itching, and swelling, leading to dermonecrosis and scar formation. However, the molecular mechanism behind the action of jellyfish venom on human skin cells is rarely understood. In the present study, we have treated the human HaCaT keratinocyte with Nemopilema nomurai jellyfish venom (NnV) to study detailed mechanisms of actions behind the skin symptoms after jellyfish envenomation. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/MS), cellular changes at proteome level were examined. The treatment of NnV resulted in the decrease of HaCaT cell viability in a concentration-dependent manner. Using NnV (at IC50), the proteome level alterations were determined at 12 h and 24 h after the venom treatment. Briefly, 70 protein spots with significant quantitative changes were picked from the gels for MALDI-TOF/MS. In total, 44 differentially abundant proteins were successfully identified, among which 19 proteins were increased, whereas 25 proteins were decreased in the abundance levels comparing with their respective control spots. DAPs involved in cell survival and development (e.g., Plasminogen, Vinculin, EMILIN-1, Basonuclin2, Focal adhesion kinase 1, FAM83B, Peroxisome proliferator-activated receptor-gamma co-activator 1-alpha) decreased their expression, whereas stress or immune response-related proteins (e.g., Toll-like receptor 4, Aminopeptidase N, MKL/Myocardin-like protein 1, hypoxia up-regulated protein 1, Heat shock protein 105 kDa, Ephrin type-A receptor 1, with some protease (or peptidase) enzymes) were up-regulated. In conclusion, the present findings may exhibit some possible key players during skin damage and suggest therapeutic strategies for preventing jellyfish envenomation.


Sign in / Sign up

Export Citation Format

Share Document