Calculating Half Maximal Inhibitory Concentration (IC50) Values from Glycomics Microarray Data Using GraphPad Prism

Author(s):  
Marie Le Berre ◽  
Jared Q. Gerlach ◽  
Iwona Dziembała ◽  
Michelle Kilcoyne
2017 ◽  
Vol 43 (1) ◽  
pp. 20-25
Author(s):  
Rosane Baldiga Tonin ◽  
Erlei Melo Reis ◽  
Aveline Avozani

ABSTRACT Reports of failure in the chemical control of wheat yellow leaf spot led to determination of the sensitivity of Drechslera tritici-repentis (Dtr) to the fungicides quinone outside inhibitors (QoIs) and demethylation inhibitors (DMIs). The IC50 was obtained for strobilurins (azoxystrobin, kresoxim-methyl, picoxystrobin and pyraclostrobin) and for triazoles (cyproconazole, epoxiconazole, propiconazole, prothioconazole and tebuconazole), using five Dtr isolates. Seven concentrations of the fungicides were tested in the bioassay: 0.00; 0.01; 0.10; 1.00; 10:00 and 20.00 and 40.00 mg/L active ingredient (a.i.). Assays consisted of completely randomized design and four replicates. Each experiment was performed twice, using the average of the two tests for statistical analysis. The percentage inhibition data for conidial germination (QoIs) and for mycelial growth (DMIs) were subjected to logarithmic regression analysis, calculating the 50% inhibitory concentration (IC50) based on the generated equation. There was a reduction in the sensitivity of Dtr isolates to strobilurins. IC50 values ranged from 0.58 to > 40.00 mg/L. The lowest sensitivity of isolates was detected for azoxystrobin, kresoxim-methyl, picoxystrobin and trifloxystrobin. Pyraclostrobin was most efficient, showing IC50 between 0.58 and 1.03 mg/L. The IC50 ranged from 0.35 to 1.37 mg/L for epoxiconazole, from 0.49 to 1.28 mg/L for propiconazole and from 1.41 to 2.34 mg/L for tebuconazole. Prothioconazole was most potent, showing IC50 between 0.09 and 0.21 mg/L. The hypothesis that the control failure can be attributed to the reduced Dtr sensitivity to the fungicides QoIs and DMIs was confirmed.


Marine Drugs ◽  
2019 ◽  
Vol 17 (3) ◽  
pp. 167 ◽  
Author(s):  
Pierre-Eric Campos ◽  
Emmanuel Pichon ◽  
Céline Moriou ◽  
Patricia Clerc ◽  
Rozenn Trépos ◽  
...  

Chemical study of the CH2Cl2-MeOH (1:1) extract of the sponge Fascaplysinopsis reticulata collected in Mayotte highlighted three new tryptophan derived alkaloids, 6,6′-bis-(debromo)-gelliusine F (1), 6-bromo-8,1′-dihydro-isoplysin A (2) and 5,6-dibromo-8,1′-dihydro-isoplysin A (3), along with the synthetically known 8-oxo-tryptamine (4) and the three known molecules from the same family, tryptamine (5), (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7). Their structures were elucidated by 1D and 2D NMR spectra and HRESIMS data. All compounds were evaluated for their antimicrobial and their antiplasmodial activities. Regarding antimicrobial activities, the best compounds are (2) and (3), with minimum inhibitory concentration (MIC) of 0.01 and 1 µg/mL, respectively, towards Vibrio natrigens, and (5), with MIC values of 1 µg/mL towards Vibrio carchariae. In addition the known 8-oxo-tryptamine (4) and the mixture of the (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7) showed moderate antiplasmodial activity against Plasmodium falciparum with IC50 values of 8.8 and 8.0 µg/mL, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5679
Author(s):  
Qing-Wei Tan ◽  
Jian-Cheng Ni ◽  
Jian-Ting Shi ◽  
Jian-Xuan Zhu ◽  
Qi-Jian Chen

Phytochemistry investigations on Ailanthus altissima (Mill.) Swingle, a Simaroubaceae plant that is recognized as a traditional herbal medicine, have afforded various natural products, among which C20 quassinoid is the most attractive for their significant and diverse pharmacological and biological activities. Our continuous study has led to the isolation of two novel quassinoid glycosides, named chuglycosides J and K, together with fourteen known lignans from the samara of A. altissima. The new structures were elucidated based on comprehensive spectra data analysis. All of the compounds were evaluated for their anti-tobacco mosaic virus activity, among which chuglycosides J and K exhibited inhibitory effects against the virus multiplication with half maximal inhibitory concentration (IC50) values of 56.21 ± 1.86 and 137.74 ± 3.57 μM, respectively.


2018 ◽  
Vol 20 (1) ◽  
pp. 1-7
Author(s):  
Anastasia Wheni Indrianingsih ◽  
Amalia Indah Prihantini ◽  
Sanro Tachibana

AbstractEndophytic fungi are the microorganisms that spend all or part of their life cycles within plant tissue without causing harmful effects on the plant. In this study, 14 endophytic fungus from Quercus phillyraeoides A. Gray were isolated. Alternaria sp. QPS 05, an endophytic fungi which was isolated from the stem of Q. phillyraeoides A. Gray showed the highest α-glucosidase inhibitory activity. Further separation of ethyl acetate extract from the fungus led to the isolation of active substance from hexane-soluble fraction which give fatty acids mixture consist of palmitic acid, oleic acid, linoleic acid and linolenic acid (1) strong inhibitory activity against α-glucosidase. Isolated fatty acids (1) had inhibitory concentration (IC50) values against Saccharomyces cerevisiae was 12.10 μg/mL. The results of the present study showed that endophytic fungus from Alternaria sp. QPS 05 potentially contained a rich source of natural antidiabetic medicine.


Author(s):  
HARIKRISHNAN N ◽  
ANAS S MOHAMIED ◽  
GEJALAKSHMI S

Objective: Nanotechnology techniques are a creation and exploitation of materials, devices, and systems through the control of matter on the nanometer length scale, i.e., involvement of atoms, molecules, and supramolecular structures. Every existing treatment modalities against human immunodeficiency virus (HIV) offer a marginal increase in the life expectancy as chitosan was converted to its derivative aminoethyl chitosan by chemical method evaluated for anti-HIV activity. Methods: Isolation of chitosan from crab shell by chemical method involves four basic steps; protein separation, calcium carbonate separation, deproteinization, and demineralization. Results: The results revealed the anti-HIV activity of the prepared nanoparticulate system. Cytotoxicity assay of the nanoparticulate system was carried out and the cytotoxic concentration 50% (CC50) value was found to be 38.07±1.42 μg/ml, indicating that the nanoparticulate system is not cytotoxic. HIV-1 infection inhibition assay was carried out and the nanoparticulate system showed excellent inhibitory activity with a half-maximal inhibitory concentration (IC50) value of 3.75±0.57 μg/ml. Conclusions: It concludes, the CC50 and inhibitory concentration 50% IC50 values, the selectivity index of the nanoparticle was found to be 17.65 compared to the standard drug nevirapine (82.32), indicating the usefulness of the formulated nanoparticulate system as potential anti-HIV agent.


2009 ◽  
Vol 92 (6) ◽  
pp. 1773-1779 ◽  
Author(s):  
Robin C Boro ◽  
K Vikas Singh ◽  
C Raman Suri

Abstract The generation of specific and sensitive antibodies against small molecules is greatly dependent upon the characteristics of the hapten-protein conjugates. In this study, we report a new fluorescence-based method for the characterization of hapten-protein conjugates. The method is based on an effect promoted by hapten-protein conjugation density upon the fluorescence intensity of the intrinsic tryptophan chromophore molecules of the protein. The proposed methodology is applied to quantify the hapten-protein conjugation density for two different chlorophenoxyacetic acid pesticides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenoxybutyric acid (2,4-DB), coupled to carrier protein. Highly sensitive anti-2,4-D and anti-2,4-DB antibodies were obtained using these well-characterized hapten-protein conjugates. The generated antibodies were used in an immunoassay format demonstrating inhibitory concentration (IC50) values equal to 30 and 7 ng/mL for 2,4-D and 2,4-DB, respectively. Linearity was observed in the concentration range between 0.1500 ng/mL with LODs around 4 and 3 ng/mL for 2,4-D and 2,4-DB, respectively, in standard water samples. The proposed method was successfully applied for the determination of the extent of hapten-protein conjugation to produce specific antibodies for immunoassay development against pesticides.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 292 ◽  
Author(s):  
Tengfei Song ◽  
Mingmin Tang ◽  
Hengju Ge ◽  
Mengxuan Chen ◽  
Xiaoyuan Lian ◽  
...  

The marine-sourced fungus Penicillium sp. ZZ380 was previously reported to have the ability to produce a series of new pyrrospirone alkaloids. Further investigation on this strain resulted in the isolation and identification of novel penicipyrroether A and pyrrospirone J. Each of them represents the first example of its structural type, with a unique 6/5/6/5 polycyclic fusion that is different from the 6/5/6/6 fused ring system for the reported pyrrospirones. Their structures were elucidated by extensive nuclear magnetic resonance (NMR) and high resolution electrospray ionization mass spectroscopy (HRESIMS) spectroscopic analyses, electronic circular dichroism (ECD) and 13C NMR calculations and X-ray single crystal diffraction. Penicipyrroether A showed potent antiproliferative activity against human glioma U87MG and U251 cells with half maximal inhibitory concentration (IC50) values of 1.64–5.50 μM and antibacterial inhibitory activity with minimum inhibitory concentration (MIC) values of 1.7 μg/mL against methicillin-resistant Staphylococcus aureus and 3.0 μg/mL against Escherichia coli.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 643
Author(s):  
Mendes ◽  
Goulart ◽  
Chaves ◽  
Faiões ◽  
Canto-Carvalho ◽  
...  

A series of seven chalcone-thiosemicarbazones (5a–5g) were synthesized and evaluated as potential new drugs (anti-leishmanial effect). Although four of the chalcone-thiosemicarbazones are already known, none of them or any compound in this class has been previously investigated for their effects on parasites of the Leishmania genus. The compounds were prepared in satisfactory yields (40–75%) and these compounds were evaluated against promastigotes, axenic amastigotes and intracellular amastigotes of L. amazonensis after 48 h of culture. The half maximal inhibitory concentration (IC50) values of the intracellular amastigotes were determined to be in the range of 3.40 to 5.95 µM for all compounds assayed. The selectivity index showed value of 15.05 for 5a, whereas pentamidine (reference drug) was more toxic in our model (SI = 2.32). Furthermore, to understand the preliminary relationship between the anti-leishmanial activity of the chalcone-thiosemicarbazones, their electronic (σ), steric (MR) and lipophilicity (π) properties were correlated, and the results indicated that moieties with electronic withdrawing effects increase the anti-leishmanial activity. The preliminary pharmacokinetic evaluation of one of the most active compound (5e) was studied via interaction to human serum albumin (HSA) using multiple spectroscopic techniques combined with molecular docking. The results of antiparasitic effects against L. amazonensis revealed the chalcone-thiosemicarbazone class to be novel prototypes for drug development against leishmaniasis.


Pharmacology ◽  
2017 ◽  
Vol 100 (3-4) ◽  
pp. 139-147 ◽  
Author(s):  
Shuyan Cao ◽  
Leping Ye ◽  
Ying Wu ◽  
Baiping Mao ◽  
Lanlan Chen ◽  
...  

Placenta secretes a large amount of progesterone and estradiol, which are critical for maintaining pregnancy. In human placenta, 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) catalyzes pregnenolone to form progesterone, and aromatase (CYP19A1) catalyzes testosterone into estradiol. Fungicides display antifungal activities and are widely used to prevent fungal infections in agricultural plants. These chemicals include azoles, such as tebuconazole (TEB), triadimefon (TRI), and vinclozolin (VCZ) or organotins, such as tributyltin (TBT) and tetrabutyltin (TTBT). Fungicides may disrupt the activities of these 2 enzymes. In the present study, we investigated the effects of these fungicides on steroid production in a human placental cell line JEG-3 and on HSD3B1 and CYP19A1 activities. Of all fungicides tested at 100 µmol/L, only TBT inhibited pregnenolone-mediated progesterone production in JEG-3 cells by over 50%. Except TTBT, all other 4 fungicides inhibited testosterone-mediated estradiol production by over 50%. TBT was a moderate HSD3B1 inhibitor with a half maximal inhibitory concentration (IC50) of 45.60 ± 0.12 µmol/L. When pregnenolone was used to determine the mode of inhibition, TBT was a competitive inhibitor of HSD3B1. The IC50 values of TEB, TRI, VCZ, and TBT for CYP19A1 were 56.84 ± 0.13, 58.73 ± 0.14, 57.42 ± 0.171, and 4.58 ± 0.048 µmol/L, respectively. TEB, TRI, and VCZ were noncompetitive inhibitors of CYP19A1, while TBT was a competitive inhibitor of this enzyme. Therefore, they are endocrine disruptors.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 108-115 ◽  
Author(s):  
D. K. Nilov ◽  
V. I. Tararov ◽  
A. V. Kulikov ◽  
A. L. Zakharenko ◽  
I. V. Gushchina ◽  
...  

The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly (ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally.The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC50 values of 150 and 50 M, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment.


Sign in / Sign up

Export Citation Format

Share Document