Advances in Crop Protection Practices for the Environmental Sustainability of Cropping Systems

Author(s):  
W.G. Dilantha Fernando ◽  
Rajesh Ramarathnam ◽  
S. Nakkeeran
Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 438 ◽  
Author(s):  
Hawes ◽  
Young ◽  
Banks ◽  
Begg ◽  
Christie ◽  
...  

The long-term sustainability of crop production depends on the complex network of interactions and trade-offs between biotic, abiotic and economic components of agroecosystems. An integrated arable management system was designed to maintain yields, whilst enhancing biodiversity and minimising environmental impact. Management interventions included conservation tillage and organic matter incorporation for soil biophysical health, reduced crop protection inputs and integrated pest management strategies for enhanced biodiversity and ecosystem functions, and intercropping, cover cropping and under-sowing to achieve more sustainable nutrient management. This system was compared directly with standard commercial practice in a split-field experimental design over a six-year crop rotation. The effect of the cropping treatment was assessed according to the responses of a suite of indicators, which were used to parameterise a qualitative multi-attribute model. Scenarios were run to test whether the integrated cropping system achieved greater levels of overall sustainability relative to standard commercial practice. Overall sustainability was rated high for both integrated and conventional management of bean, barley and wheat crops. Winter oilseed crops scored medium for both cropping systems and potatoes scored very low under standard management but achieved a medium level of sustainability with integrated management. In general, high scores for environmental sustainability in integrated cropping systems were offset by low scores for economic sustainability relative to standard commercial practice. This case study demonstrates the value of a ‘whole cropping systems’ approach using qualitative multi-attribute modelling for the assessment of existing cropping systems and for predicting the likely impact of new management interventions on arable sustainability.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1818
Author(s):  
Francisco Hernández-Aparicio ◽  
Purificación Lisón ◽  
Ismael Rodrigo ◽  
José María Bellés ◽  
M. Pilar López-Gresa

New strategies of control need to be developed with the aim of economic and environmental sustainability in plant and crop protection. Metabolomics is an excellent platform for both understanding the complex plant–pathogen interactions and unraveling new chemical control strategies. GC-MS-based metabolomics, along with a phytohormone analysis of a compatible and incompatible interaction between tomato plants and Fusarium oxysporum f. sp. lycopersici, revealed the specific volatile chemical composition and the plant signals associated with them. The susceptible tomato plants were characterized by the over-emission of methyl- and ethyl-salicylate as well as some fatty acid derivatives, along with an activation of salicylic acid and abscisic acid signaling. In contrast, terpenoids, benzenoids, and 2-ethylhexanoic acid were differentially emitted by plants undergoing an incompatible interaction, together with the activation of the jasmonic acid (JA) pathway. In accordance with this response, a higher expression of several genes participating in the biosynthesis of these volatiles, such as MTS1, TomloxC,TomloxD, and AOS, as well as JAZ7, a JA marker gene, was found to be induced by the fungus in these resistant plants. The characterized metabolome of the immune tomato plants could lead to the development of new resistance inducers against Fusarium wilt treatment.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-1
Author(s):  
Maria Pergola ◽  
◽  
Assunta Maria Palese ◽  
Alessandro Persiani ◽  
Pasquale De Francesco ◽  
...  

The COVID-19 pandemic has drastically changed the lives of people, as well as the production and economic systems throughout the world. The flow of raw materials and products, the supply of labor and manpower, and the purchasing power have all been changed to the detriment of individual health and well-being. Such a situation requires placing even more emphasis on the search for virtuous agricultural systems compatible with the goals of economic and environmental development so clearly defined at the world level in the last decades. The present study aimed to assess the environmental and economic performance of some typical Mediterranean crops grown under different agronomical management regimes, such as strawberry, hazelnut, apricot tree, kiwifruit, peach, olive tree, and grapevine, to emphasize the importance of the mentioned issues even in the current pandemic situation. Life cycle assessment (LCA) was used to investigate the environmental profile of the studied crops, while lifecycle costing (LCC) was performed to assess and compare the economic aspects. From the environmental perspective, the hobby-organic olive systems were the most eco-friendly cropping systems, emitting 0.031 to 0.105 kg CO2eq per kg olives, while the organic hazelnut system had the greatest impact (1.001 kg of CO2eq per kg). Apricot, kiwifruit, and peach systems used N and P inputs most effectively, while strawberry systems efficiently used fossil fuels. Olive HO-2, kiwifruit, and peach cropping systems had the lowest budgets, with the costs amounted to 0.12 € kg-1 per fruit for Olive HO-2 and 0.28 € kg-1 per fruit for both kiwifruit and peach. On the contrary, organic strawberry cultivation was the most expensive (4.77 € kg-1). The variability in results due to the large differences between contexts, such as landscape, technical knowledge, and crop management, characterized the studied agricultural systems. To easily identify sustainability classes and to diminish the impact of farming practices, a considerable effort should be expended to combine LCA with LCC, C sequestration estimates, and some other useful indicators for the environmental quality evaluation.


2021 ◽  
pp. 641-668
Author(s):  
Jürgen Köhl ◽  

Bioprotectants have the potential to replace chemical pesticides in agricultural cropping systems and crop protection approaches. Development of new bioprotectants in combination with more restricted use of chemical crop protection will result in their much stronger market position in the future. Bioprotectants fulfil particular roles in current and future crop protection approaches, primarily reducing pesticide residues in harvested products in conventional systems, as well as being the first and preferred control option in integrated pest management programs and organic farming, and complementing resident microbiomes in future resilient cropping systems. The process of developing bioprotectants can take ten to 15 years. This chapter aims to give a brief overview of the role of bioprotectants in current and future crop protection approaches to stimulate discussion within the biocontrol industries, and amongst scientists and funding agencies on the need for new generations of bioprotectants for an agriculture industry undergoing transition.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 841 ◽  
Author(s):  
Costanza Ceccanti ◽  
Marco Landi ◽  
Daniele Antichi ◽  
Lucia Guidi ◽  
Luigi Manfrini ◽  
...  

The sustainability of current farming systems has been questioned in the last decades, especially in terms of the environmental impact and mitigation of global warming. Also, the organic sector, which is supposed to impact less on the environment than other more intensive systems, is looking for innovative solutions to improve its environmental sustainability. Promisingly, the integration of organic management practices with conservation agriculture techniques may help to increase environmental sustainability of food production. However, little is known about the possible impact of conservation agriculture on the content of bioactive compounds in cash crops. For this reason, a two-year rotation experiment used 7 cash crops (4 leafy vegetables and 3 fruit crops) to compare integrated (INT), organic farming (ORG), and organic no-tillage (ORG+) systems to evaluate the possible influence of cropping systems on the nutritional/nutraceutical values of the obtained fruits and leafy vegetables. The results pointed out specific responses based on the species as well as the year of cultivation. However, cultivation with the ORG+ cropping system resulted in effective obtainment of fruits and vegetables with higher levels of bioactive compounds in several cases (11 out 16 observations). The ORG+ cropping system results are particularly promising for leafy vegetable cultivation, especially when ORG+ is carried out on a multi-year basis. Aware that the obtained data should be consolidated with longer-term experiments, we conclude that this dataset may represent a good starting point to support conservation agriculture systems as a possible sustainable strategy to obtain products with higher levels of bioactive compounds.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 710 ◽  
Author(s):  
Rossi ◽  
Sperandio ◽  
Caffi ◽  
Simonetto ◽  
Gilioli

The rational control of harmful organisms for plants (pests) forms the basis of the integrated pest management (IPM), and is fundamental for ensuring agricultural productivity while maintaining economic and environmental sustainability. The high level of complexity of the decision processes linked to IPM requires careful evaluations, both economic and environmental, considering benefits and costs associated with a management action. Plant protection models and other decision tools (DTs) have assumed a key role in supporting decision-making process in pest management. The advantages of using DTs in IPM are linked to their capacity to process and analyze complex information and to provide outputs supporting the decision-making process. Nowadays, several DTs have been developed, tackling different issues, and have been applied in different climatic conditions and agricultural contexts. However, their use in crop management is restricted to only certain areas and/or to a limited group of users. In this paper, we review the current state-of-the-art related to DTs for IPM, investigate the main modelling approaches used, and the different fields of application. We also identify key drivers influencing their adoption and provide a set of critical success factors to guide the development and facilitate the adoption of DTs in crop protection.


Author(s):  
Laura Masilionytė ◽  
Stanislava Maikštėnienė ◽  
Aleksandras Velykis ◽  
Antanas Satkus

The paper presents the research conducted at the Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry on a clay loam Gleyic Cambisol during the period of 2006–2010. The research investigated the changes of mineral nitrogen in soil growing catch crops during the winter wheat post-harvest period and incorporating their biomass into the soil for green manure. Green manure implications for environmental sustainability were assessed. The studies were carried out in the soil with a low (1.90–2.00%) and moderate (2.10–2.40%) humus content in organic and sustainable cropping systems. The crop rotation, expanded in time and space, consisted of red clover (Trifolium pretense L.) → winter wheat (Triticum aestivum L.) → field pea (Pisum sativum L.) → spring barley (Hordeum vulgare L.) with undersown red clover. Investigations of mineral nitrogen migration were assessed in the crop rotation sequence: winter wheat + catch crops → field pea. Higher organic matter and nitrogen content in the biomass of catch crops were accumulated when Brassisaceae (white mustard, Sinapis alba L.) was grown in a mixture with buckwheat (Fagopyrum esculentum Moench.) or as a sole crop, compared with oilseed radish (Raphanus sativus var. Oleiferus Metzg.) grown with the long-day legume plants blue lupine (Lupinus angustifolius L.). Mineral nitrogen concentration in soil depended on soil humus status, cropping system and catch crop characteristics. In late autumn there was significantly higher mineral nitrogen concentration in the soil with moderate humus content, compared with soil with low humus content. The lowest mineral nitrogen concentration in late autumn in the 0–40 cm soil layer and lower risk of leaching into deeper layers was measured using organic cropping systems with catch crops. The highest mineral nitrogen concentration was recorded in the sustainable cropping system when mineral nitrogen fertilizer (N30) was applied for winter wheat straw decomposition. In the organic cropping system, the incorporation of catch crop biomass into soil resulted in higher mineral nitrogen reserves in soil in spring than in the sustainable cropping system, (mineral nitrogen fertilizer (N30) applied for straw decomposition in autumn and no catch crop grown). Applying organic cropping systems with catch crops is an efficient tool to promote environmental sustainability.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1124
Author(s):  
Martina Corti ◽  
Pietro Marino Gallina ◽  
Daniele Cavalli ◽  
Bianca Ortuani ◽  
Giovanni Cabassi ◽  
...  

The adoption of precision agriculture has the potential to increase the environmental sustainability of cropping systems as well as farmers’ income. Farmers in transition to precision agriculture need low-input and effective protocols to delineate homogenous management zones to optimize their actions without past knowledge e.g., yield maps. Different approaches have been developed so far, based on the analysis of the within-field variability in crop and soil properties, but procedures were rarely suited for operational conditions. We identified here a low-inputs protocol to map management zones from soil electrical conductivity and/or crop vegetation indices, using a winter wheat field in northern Italy as a pilot case. The reliability of the alternative data sources was evaluated at three crop development stages using a yield map as reference. Red-edge and NIR (NDRE) bands were the most reliable data sources for management zones identification, with 62%, 68%, and 74% of correct classifications at early tillering, stem elongation, and late booting, respectively. Our work identifies a minimum dataset for accurate management zones’ definition and highlights that in-season monitoring based on the red-edge band was able to reliably identify management zones already at early tillering, despite minor differences in crop growth.


2015 ◽  
Vol 95 (6) ◽  
pp. 1049-1072 ◽  
Author(s):  
Joanne R. Thiessen Martens ◽  
Martin H. Entz ◽  
Mark D. Wonneck

Thiessen Martens, J. R., Entz, M. H. and Wonneck, M. D. 2015. Review: Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience. Can. J. Plant Sci. 95: 1049–1072. Redesign of agricultural systems according to ecological principles has been proposed for the development of sustainable systems. We review a wide variety of ecologically based crop production practices, including crop varieties and genetic diversity, crop selection and rotation, cover crops, annual polyculture, perennial forages, perennial grains, agroforestry systems, reducing tillage, use of animal manures and green manures, soil biological fertility, organic production systems, integrated crop–livestock systems, and purposeful design of farm landscapes (farmscaping), and discuss their potential role in enhancing the profitability, environmental sustainability, and resilience of Canadian prairie cropping systems. Farming systems that most closely mimic natural systems through appropriate integration of diverse components, within a context of supportive social and economic structures, appear to offer the greatest potential benefits, while creating a framework in which to place all other farming practices. Our understanding of ecological relationships within agricultural systems is currently lacking, and a major shift in research, education, and policy will be required to purposefully and proactively redesign Canadian prairie agricultural systems for long-term sustainability.


Sign in / Sign up

Export Citation Format

Share Document