Isolation of Cellular Receptors for Viruses

1986 ◽  
pp. 117-125 ◽  
Author(s):  
Richard L. Crowell ◽  
K-H. Lee Hsu
Keyword(s):  
Author(s):  
Jeffry A. Reidler ◽  
John P. Robinson

We have prepared two-dimensional (2D) crystals of tetanus toxin using procedures developed by Uzgiris and Kornberg for the directed production of 2D crystals of monoclonal antibodies at an antigen-phospholipid monolayer interface. The tetanus toxin crystals were formed using a small mole fraction of the natural receptor, GT1, incorporated into phosphatidyl choline monolayers. The crystals formed at low concentration overnight. Two dimensional crystals of this type are particularly useful for structure determination using electron microscopy and computer image refinement. Three dimensional (3D) structural information can be derived from these crystals by computer reconstruction of photographs of toxin crystals taken at different tilt angles. Such 3D reconstructions may help elucidate the mechanism of entry of the enzymatic subunit of toxins into cells, particularly since these crystals form directly on a membrane interface at similar concentrations of ganglioside GT1 to the natural cellular receptors.


2021 ◽  
Vol 10 (14) ◽  
pp. 3185
Author(s):  
Linsey J. F. Peters ◽  
Alexander Jans ◽  
Matthias Bartneck ◽  
Emiel P. C. van der Vorst

Atherosclerosis is the main underlying cause of cardiovascular diseases (CVDs), which remain the number one contributor to mortality worldwide. Although current therapies can slow down disease progression, no treatment is available that can fully cure or reverse atherosclerosis. Nanomedicine, which is the application of nanotechnology in medicine, is an emerging field in the treatment of many pathologies, including CVDs. It enables the production of drugs that interact with cellular receptors, and allows for controlling cellular processes after entering these cells. Nanomedicine aims to repair, control and monitor biological and physiological systems via nanoparticles (NPs), which have been shown to be efficient drug carriers. In this review we will, after a general introduction, highlight the advantages and limitations of the use of such nano-based medicine, the potential applications and targeting strategies via NPs. For example, we will provide a detailed discussion on NPs that can target relevant cellular receptors, such as integrins, or cellular processes related to atherogenesis, such as vascular smooth muscle cell proliferation. Furthermore, we will underline the (ongoing) clinical trials focusing on NPs in CVDs, which might bring new insights into this research field.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 354
Author(s):  
Chia-Ming Su ◽  
Raymond Robert Richard Rowland ◽  
Dongwan Yoo

Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor–ligand for the control of PRRS.


1982 ◽  
Vol 257 (22) ◽  
pp. 13291-13296 ◽  
Author(s):  
A A Branca ◽  
C R Faltynek ◽  
S B D'Alessandro ◽  
C Baglioni
Keyword(s):  

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1014
Author(s):  
Polly-Anne Jeffrey ◽  
Martín López-García ◽  
Mario Castro ◽  
Grant Lythe ◽  
Carmen Molina-París

Cellular receptors on the cell membrane can bind ligand molecules in the extra-cellular medium to form ligand-bound monomers. These interactions ultimately determine the fate of a cell through the resulting intra-cellular signalling cascades. Often, several receptor types can bind a shared ligand leading to the formation of different monomeric complexes, and in turn to competition for the common ligand. Here, we describe competition between two receptors which bind a common ligand in terms of a bi-variate stochastic process. The stochastic description is important to account for fluctuations in the number of molecules. Our interest is in computing two summary statistics—the steady-state distribution of the number of bound monomers and the time to reach a threshold number of monomers of a given kind. The matrix-analytic approach developed in this manuscript is exact, but becomes impractical as the number of molecules in the system increases. Thus, we present novel approximations which can work under low-to-moderate competition scenarios. Our results apply to systems with a larger number of population species (i.e., receptors) competing for a common resource (i.e., ligands), and to competition systems outside the area of molecular dynamics, such as Mathematical Ecology.


2012 ◽  
Vol 87 (3) ◽  
pp. 1658-1663 ◽  
Author(s):  
Marco A. Díaz-Salinas ◽  
Pedro Romero ◽  
Rafaela Espinosa ◽  
Yasutaka Hoshino ◽  
Susana López ◽  
...  

ABSTRACTRotaviruses are internalized into MA104 cells by endocytosis, with different endocytic pathways used depending on the virus strain. The bovine rotavirus UK strain enters cells through a clathrin-mediated endocytic process, while the simian rhesus rotavirus (RRV) strain uses a poorly defined endocytic pathway that is clathrin and caveolin independent. The viral surface protein VP7 and the spike protein VP4 interact with cellular receptors during cell binding and penetration. To determine the viral protein that defines the mechanism of internalization, we used a panel of UK × RRV reassortant viruses having different combinations of the viral structural proteins. Characterization of the infectivities of these reassortants in MA104 cells either transfected with a small interfering RNA (siRNA) against the heavy chain of clathrin or incubated with hypertonic medium that destabilizes the clathrin coat clearly showed that VP4 determines the pathway of virus entry. Of interest, the characterization of Nar3, a sialic acid-independent variant of RRV, showed that a single amino acid change in VP4 shifts the route of entry from being clathrin dependent to clathrin independent. Furthermore, characterizations of several additional rotavirus strains that differ in their use of cellular receptors showed that all entered cells by clathrin-mediated endocytosis, suggesting that diverse VP4-cell surface interactions can lead to rotavirus cell entry through this endocytic pathway.


2001 ◽  
Vol 75 (21) ◽  
pp. 10054-10064 ◽  
Author(s):  
Jerg Schmidt ◽  
Volker Gerdts ◽  
Jörg Beyer ◽  
Barbara G. Klupp ◽  
Thomas C. Mettenleiter

ABSTRACT Infection of cells by herpesviruses is initiated by the interaction of viral envelope glycoproteins with cellular receptors. In the alphaherpesvirus pseudorabies virus (PrV), the causative agent of Aujeszky's disease in pigs, the essential glycoprotein D (gD) mediates secondary attachment of virions to target cells by binding to newly identified cellular receptors (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618–1620, 1998). However, in the presence of compensatory mutations, infection can also occur in the absence of gD, as evidenced by the isolation in cell culture of an infectious gD-negative PrV mutant (PrV-gD− Pass) (J. Schmidt, B. G. Klupp, A. Karger, and T. C. Mettenleiter, J. Virol. 71:17–24, 1997). PrV-gD− Pass is replication competent with an only moderate reduction in specific infectivity but appears to bind to receptors different from those recognized by wild-type PrV (A. Karger, J. Schmidt, and T. C. Mettenleiter, J. Virol. 72:7341–7348, 1998). To analyze whether this alteration in receptor usage in vitro influences infection in vivo, the model host mouse and the natural host pig were intranasally infected with PrV-gD− Pass and were compared to animals infected by wild-type PrV. For mice, a comparable progress of disease was observed, and all animals infected with mutant virus died, although they exhibited a slight delay in the onset of symptoms and, correspondingly, a longer time to death. In contrast, whereas wild-type PrV-infected pigs showed clinical signs and histological and histopathological findings typical of PrV infection, no signs of disease were observed after infection with PrV-gD− Pass. Moreover, in these animals, virus-infected cells were not detectable by immunohistochemical staining of different organ samples and no virus could be isolated from nasal swabs. Mutations in glycoproteins B and H were found to correlate with, and probably contribute to, gD-independent infectivity. In conclusion, although PrV-gD− Pass is virulent in mice, it is apparently unable to infect the natural host, the pig. This altered host range in vivo correlates with a difference of receptor usage in vitro and demonstrates for the first time the importance of gD receptors in alphaherpesvirus infection of an animal host.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mairim Alexandra Solis ◽  
Ying-Hui Chen ◽  
Tzyy Yue Wong ◽  
Vanessa Zaiatz Bittencourt ◽  
Yen-Cheng Lin ◽  
...  

Hyaluronan is a linear glycosaminoglycan that has received special attention in the last few decades due to its extraordinary physiological functions. This highly viscous polysaccharide is not only a lubricator, but also a significant regulator of cellular behaviors during embryogenesis, morphogenesis, migration, proliferation, and drug resistance in many cell types, including stem cells. Most hyaluronan functions require binding to its cellular receptors CD44, LYVE-1, HARE, layilin, and RHAMM. After binding, proteins are recruited and messages are sent to alter cellular activities. When low concentrations of hyaluronan are applied to stem cells, the proliferative activity is enhanced. However, at high concentrations, stem cells acquire a dormant state and induce a multidrug resistance phenotype. Due to the influence of hyaluronan on cells and tissue morphogenesis, with regards to cardiogenesis, chondrogenesis, osteogenesis, and neurogenesis, it is now been utilized as a biomaterial for tissue regeneration. This paper summarizes the most important and recent findings regarding the regulation of hyaluronan in cells.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Emma van der Meulen ◽  
Meg Anderton ◽  
Melissa J. Blumenthal ◽  
Georgia Schäfer

The process of Kaposi’s Sarcoma Herpes Virus’ (KSHV) entry into target cells is complex and engages several viral glycoproteins which bind to a large range of host cell surface molecules. Receptors for KSHV include heparan sulphate proteoglycans (HSPGs), several integrins and Eph receptors, cystine/glutamate antiporter (xCT) and Dendritic Cell-Specific Intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This diverse range of potential binding and entry sites allows KSHV to have a broad cell tropism, and entry into specific cells is dependent on the available receptor repertoire. Several molecules involved in KSHV entry have been well characterized, particularly those postulated to be associated with KSHV-associated pathologies such as Kaposi’s Sarcoma (KS). In this review, KSHV infection of specific cell types pertinent to its pathogenesis will be comprehensively summarized with a focus on the specific cell surface binding and entry receptors KSHV exploits to gain access to a variety of cell types. Gaps in the current literature regarding understanding interactions between KSHV glycoproteins and cellular receptors in virus infection are identified which will lead to the development of virus infection intervention strategies.


Sign in / Sign up

Export Citation Format

Share Document