Upgrading Fine-Grained Iron Ores: (i) General Review (ii) Agbaja Iron Ore

Author(s):  
G. G. O. O. Uwadiale
Author(s):  
M. I. NETESA ◽  
A. V. KRASNYUK ◽  
A. M. NETESA ◽  
N. A. NIKIFOROVA

Purpose. Analyze scientific publications on the existing problems of environmental pollution by secondary industrial products. Search for ways to solve these issues through the rational use of concrete in construction with additives of secondary industrial products, especially fine-grained ones. Determination of rational compositions of medium-strength concrete with the minimum required consumption of cement and filler from iron ore dressing wastes of mining and processing plants. Methodology. To achieve this goal, the experience of improving the structure and properties of concrete by introducing complex additives based on secondary industrial products into its composition is analyzed. The following materials were used for the research: Portland cement CEM 41.7 from Krivoy Rog; as a large aggregate – crushed granite with a maximum grain size of 20 mm; fine aggregate – river quartz sand; mineral additives – products of concentration of iron ores of the Southern Mining and Processing Plant. The experiment was carried out on certified equipment. Control specimens with a side of 10 cm were formed. The compressive strength of concrete was determined according to a standard procedure. Based on the results of the mathematical analysis, graphical dependences of the change in the optimized characteristics on the variable parameters – the consumption of cement, the products of concentration of iron ores and the plasticizer – were built. Findings. Based on the results of testing the samples, the calculation of mathematical models of the experiment was carried out and polynomials of the third degree were obtained for the optimized parameters – the average strength of the samples and the coefficient of efficiency of using cement. The following patterns can be distinguished. The strength of concrete depends to the greatest extent on the consumption of cement in the composition of the concrete mixture and increases significantly with an increase in its content within the studied limits. With an increase in the filler content in the studied range, the strength of concrete, and, accordingly, the coefficient of efficiency of using cement increases with a decrease in the content of cement in the composition of the concrete mixture. Originality. The studies carried out make it possible to determine the main regularities of increasing the efficiency of cement use when utilizing local secondary industrial products in concrete, namely, the introduction of iron ore dressing waste from mining and processing plants as a fine-grained additive in concrete. It was found that it is possible to obtain the required low concrete strength with a significantly lower cement consumption by ensuring a rational grain size composition of the concrete mixture components. Practical value. When designing concrete compositions with a high coefficient of cement utilization, it is necessary to use the obtained research results, providing cement savings and utilizing a significant amount of fine-grained secondary industrial products.


2020 ◽  
Vol 72 (2) ◽  
pp. 39-52

The article presents the characteristics of iron ores and concentrates in terms of assessing their impact on the sintering process and on the physicochemical properties of the sinter. The article describes the methodology for conducting laboratory sintering tests on a pan using the line for semi-industrial simulation of sintering of iron ore and waste as well as other auxiliary devices at the Primary Processes Unit of the Łukasiewicz – Institute of Ferrous Metallurgy. The results of the influence of various dusty components (concentrates), fine-grained iron ores (sinter ores) and addition of quicklime to the mixture on the basic parameters of the sintering process are also included. The results of tests on the properties of sinters made from various sintering mixtures are also presented.


2019 ◽  
Vol 70 (11) ◽  
pp. 3835-3842
Author(s):  
Mihai Dumitru Tudor ◽  
Mircea Hritac ◽  
Nicolae Constantin ◽  
Mihai Butu ◽  
Valeriu Rucai ◽  
...  

Direct use of iron ores in blast furnaces, without prior sintering leads to a reduction in production costs and energy consumption [1,2]. Fine-grained iron ores and iron oxides from ferrous wastes can be used together with coal dust and limestone in mixed injection technology through the furnace tuyeres. In this paper are presented the results of experimental laboratory investigations for establishing the physic-chemical characteristics of fine materials (iron ore, limestone, pulverized coal) susceptible to be used for mixed injection in blast furnace. [1,4]. The results of the experimental research have shown that all the raw materials analyzed can be used for mixt injection in blast furnace.


2013 ◽  
Vol 701 ◽  
pp. 28-31 ◽  
Author(s):  
Rusila Zamani Abd Rashid ◽  
Hadi Purwanto ◽  
Hamzah Mohd Salleh ◽  
Mohd Hanafi Ani ◽  
Nurul Azhani Yunus ◽  
...  

This paper pertains to the reduction process of local low grade iron ore using palm kernel shell (PKS). It is well known that low grade iron ores contain high amount of gangue minerals and combined water. Biomass waste (aka agro-residues) from the palm oil industry is an attractive alternative fuel to replace coal as the source of energy in mineral processing, including for the treatment and processing of low grade iron ores. Both iron ore and PKS were mixed with minute addition of distilled water and then fabricated with average spherical diameter of 10-12mm. The green composite pellets were subjected to reduction test using an electric tube furnace. The rate of reduction increased as temperature increases up to 900 °C. The Fe content in the original ore increased almost 12% when 40 mass% of PKS was used. The reduction of 60:40 mass ratios of iron ore to PKS composite pellet produced almost 11.97 mass% of solid carbon which was dispersed uniformly on the surface of iron oxide. The aim of this work is to study carbon deposition of PKS in iron ore through reduction process. Utilization of carbon deposited in low grade iron ore is an interesting method for iron making process as this solid carbon can act as energy source in the reduction process.


2020 ◽  
Vol 201 ◽  
pp. 01026
Author(s):  
Mykola Stupnik ◽  
Vsevolod Kalinichenko ◽  
Olena Kalinichenko ◽  
Sofiia Yakovlieva

The work considers conditions of deep levels of the Underground Mine Group for underground ore mining (as underground mines) of the Mining Department of the PJSC “ArcelorMittal Kryvyi Rih” (the PJSC “ArcelorMittal Kryvyi Rih”). The research aims to improve indicators of mined ore mass extraction when mining rich iron ores through studying and optimizing consumption of explosives, enhancing mining technology to provide fulfilment of the underground iron ore mining program. During the research, there are analyzed mining geological and technical conditions of the deposit mining as well as current technologies of iron ore mining at the Underground Mine Group of the PJSC “ArcelorMittal Kryvyi Rih”. The work analyzes the achieved indices and consumption of explosives for drilling and blasting at the Underground Mine Group. The mining geological and technical conditions of the deposit mining as well as current technologies of mining, parameters of preparatory operations, the nomenclature and qualitative characteristics of many types of explosives are determined to have changed. This complicates planning consumption of explosives and making their estimates for work sites. However, this is a reason for selecting highly efficient technology and machinery in deteriorating mining and geological conditions of operating at over 1200 m depths. The work determines dependencies of a stress value on a mining depth and physical properties of rocks, as well as parameters of drilling and blasting operations considering the stress-strain state of the massif under high rock pressure at deep levels of the Mining Group of the PJSC “ArcelorMittal Kryvyi Rih”.


2015 ◽  
Vol 51 (1) ◽  
pp. 33-40 ◽  
Author(s):  
X.B. Huang ◽  
X X.W. ◽  
J.J. Song ◽  
C.G. Bai ◽  
R.D. Zhang ◽  
...  

The relative contact angle (?RCA) for seven iron ore fines was measured by using Washburn Osmotic Pressure method under laboratory conditions. By choosing cyclohexane as the reference that can perfectly wet iron ore particles, the relative contact angles were measured and varied from 57? to 73?. With the volume % of goethite (?G) as the variable, a new model for relative contact angle was developed. The expected relative contact angle for pure goethite is about 56?, while that for goethite free samples is about 77?. Physical properties, such as surface morphology (SMI) and pore volume (Vpore) can influence the relative contact angle. The ?G can be expressed as a function of SMI and VPore. Thus, we inferred that the relative contact angle is a function of ?G for the iron ores used. The measured relative contact angles were found to be in good agreement (Radj 2 >0.97) with the calculated ones based on the research from Iveson, et al. (2004). Comparing with the model developed by Iveson et al.(2004), the new model for contact angle proposed in this paper is similar, but more detailed with two meaningful physical parameters. The modification of physicochemical properties on iron ores would be another topic in the further study on granulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Chi Yu ◽  
Xinwen Wang ◽  
Kunfeng Pang ◽  
Guofeng Zhao ◽  
Wenpeng Sun

Deep dry screening is the key unit in mineral processing. A vibrating flip-flow screen (VFFS) can provide effective solutions for screening fine-grained minerals, and it has been extensively used in many industrial fields. An accurate dynamic model of VFFS considering the influence of materials is significant for its dynamic analysis and screening process research, but it has rarely been studied in detail. In this paper, an improved dynamic model of VFFS is proposed and its dynamic equations are solved to find the reasonable operating condition, and experiments are carried out to verify the reasonability of the proposed model under no-load and loading materials conditions. Furthermore, the method of multistage sampling and multilayer screening is also applied to evaluate the screening performance of iron ore at 3 mm cut size on VFFS. Results show that when the mass of materials, relative amplitude, and operating frequency have values of 107 kg, about 6 mm and 80.79 rad/s, respectively, the screening efficiency gradually increases with an increase of screening length, reaching 89.05%; however, it does not change much when the screening length exceeds 1900.8 mm. Additionally, the misplaced materials of coarse particles will continue to increase as the screening length increases. This provides theoretical and technical support for the optimization of the length of the VFFS.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1393 ◽  
Author(s):  
Yanwei Yang ◽  
Xiaojian Hao ◽  
Lili Zhang ◽  
Long Ren

Due to the complexity of, and low accuracy in, iron ore classification, a method of Laser-Induced Breakdown Spectroscopy (LIBS) combined with machine learning is proposed. In the research, we collected LIBS spectra of 10 iron ore samples. At the beginning, principal component analysis algorithm was employed to reduce the dimensionality of spectral data, then we applied k-nearest neighbor model, neural network model, and support vector machine model to the classification. The results showed that the accuracy of three models were 82.96%, 93.33%, and 94.07% respectively. The results also demonstrated that LIBS with machine learning model exhibits an excellent classification performance. Therefore, LIBS technique combined with machine learning can achieve a rapid, precise classification of iron ores, and can provide a completely new method for iron ores’ selection in the metallurgical industry.


2020 ◽  
Vol 980 ◽  
pp. 359-367
Author(s):  
Zhong Hang Cheng ◽  
Dian Bing Zhu ◽  
Shu Juan Dai ◽  
Ahmed Sobhy

The mineral processing technology of Anshan-type iron ores has been developed in a rapid speed in recent years, and the combined flowsheet at the core of anionic reverse flotation has become a mainstream in the beneficiation of Anshan-type iron ores in china. With the successful application of this combined flowsheet, some obvious problems are also emerging. Such as high requirement of pulp temperature, complex reagent system, high cost of reagent consumption and so on. In view of this,we have carried out an experimental study on the separation of Anshan type iron ore by cationic reverse flotation . A new collector (named KBD) which is mixed amines have been developed . On this basis, the actual mineral separation experiment is carried out in the laboratory.With KBD as the collector,and starch and sodium hexametaphoshate as the depressant, has resulted in an iron concentrate of 68.16% and recovery rate of 89.71%. The determination of the electrokinetic potential and the infra-red spectroscopic analysis show that KBD can effectively and priorly adsorbed to the surface of quartz, and has greatly change the elecrtokinetic potential of quartz.The interaction of the depressing agent has increased the differences of the floatabilities in quartz and hermitite and changed the surface electric property so that the effective separation has been realized.


Sign in / Sign up

Export Citation Format

Share Document