Semi-Quantitative XRD Analysis of Fly Ash Using Rutile as an Internal Standard

1989 ◽  
pp. 569-576 ◽  
Author(s):  
A. Thedchanamoorthy ◽  
G. J. McCarthy
1988 ◽  
Vol 32 ◽  
pp. 569-576 ◽  
Author(s):  
A. Thedchanamoorthy ◽  
G.J. McCarthy

AbstractXRD analysis of fly ash was quantitated using the Reference Intensity Ratio (RIR) method and rutile (TiO2) as an internal standard. Rutile RIR's for 15 of the crystalline phases commonly observed in North American fly ash were determined. Error analysis on the various steps in quantitation indicated that precision ranged from ±10% of the amount present for phases that diffract x-rays strongly to ±21% for weakly diffracting phases. Limit of detection in the mostly glassy fly ashes ranged from 0.2% for lime, the most strongly diffracting phase, to 3.5% for weakly diffracting mullite. Accuracy evaluated with a simulated fly ash was within the limits established by precision, but in actual fly ash samples, accuracy will be a function of the match between the crystallinity and composition of the analyte and the analyte standard. Overlaps among peaks of some of the important phases require intensity proportioning; for this reason, the method is best described as semi-quantitative.


2015 ◽  
Vol 69 (5) ◽  
Author(s):  
Albena K. Detcheva ◽  
Svilen E. Mitsiev ◽  
Paunka S. Vassileva ◽  
Juri H. Jordanov ◽  
Metody G. Karadjov ◽  
...  

AbstractThe contents of Cl, Ca, K, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb in raw coal fly ash from five Bulgarian power plants were determined by total reflection X-ray fluorescence (TXRF), using gallium as the internal standard. The samples were analysed as in slurry form in Triton


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 60 ◽  
Author(s):  
Muhammad Ahad ◽  
Muhammad Ashraf ◽  
Rabinder Kumar ◽  
Mukhtar Ullah

Mass concrete has been commonly known for its thermal stresses which arise due to the entrapment of hydration temperature susceptible to thermal cracking. The utilization of mineral additives is a promising and widely adopted technique to mitigate such effects. This paper presents the thermal, physico-chemical, mechanical, and morphological behaviour of mass concrete with blends of bentonite (BT) and fly ash (FA). Apart from the rise in temperature due to hydration, the compressive strength, ultrasonic pulse velocity (UPV), differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and microstructure were studied. The results of this study revealed that the substitution of BT and FA significantly improved the compressive strength and development rate of UPV in the mass concrete samples. The FA concrete (FC) specimen presented the lowest temperature during the peak hours compared to all other concrete mixes studied in this research. Bentonite concrete (BC) was also found to be more effective in controlling the escalation of temperature in mass concrete. Scan electron microscopy (SEM) micrographs presented partially reacted FA particles in a mix. XRD and DTA analysis indicated that the concentration of calcium hydroxide (CH) declined by substituting FA and BT, specifically in ternary blends, which was due to the dilution effect and consumption of CH through the pozzolanic reaction.


2019 ◽  
Vol 296 ◽  
pp. 173-179 ◽  
Author(s):  
Matěj Lédl ◽  
Lucie Galvánková ◽  
Rostislav Drochytka

This paper is focused on the effect of treatment of fly ash after selective non-catalytic reduction (SNCR) with tannin on autoclaved aerated concrete (AAC) production in order to reduce or stop ammonia leakage from the fresh mixture due to its alkalinity. A pure form of tannin and a tannin-based product „Farmatan“ were used as a treatment in dosage ranging from 0,5 g – 3 g of agent per 1 kg of fly ash. Efficient dosage was determined at 2 wt.% of fly ash by the speed of an indicator change due to gaseous ammonia diluted in water. The rheological properties of fresh mixtures were observed by consistency test in Viskomat showing that Farmatan causes delay of hydration. The results of bulk density and compressive strength testing revealed that Farmatan causes an increase of bulk density and at higher amount decreases the compressive strength because of thermal crack formation due to combined effect of delayed hydration and thixotropy. Using x-ray diffraction (XRD) analysis there were no differences in phase composition observed.


1988 ◽  
Vol 3 (3) ◽  
pp. 144-152 ◽  
Author(s):  
G. A. Raab

AbstractThe method described in this paper is a strict protocol for X-ray diffraction (XRD) analysis of mineral phases found in soils. Its application is not restricted to soils and is an attempt to standardize XRD sample preparation and analysis. The protocol requires the particle size of the < 2 mm - 0.002 mm fraction be reduced to 0.002 mm before analysis. In die qualitative section, the clay fraction ( < 0.002 mm particle size) is prepared as oriented slides. The suspended clay fraction is saturated with ethylene glycol, K +, and Mg+2; pipeted; air-dried; heat-treated at 110°C, 350°C, and 550°C; and X-rayed at each step in order to properly identify the clay minerals. In the quantitative section, the method employs a matrix-flushing agent, corundum (Al2O3). The corundum acts also as an internal standard, a calibration standard, and a reference standard. The suspended clay fraction is freeze-dried and corundum is added to each sample. Randomly oriented powder mounts are prepared from the < 2 mm - 0.002 mm fraction, and the < 0.002 mm fraction, and X-rayed. A series of reference standards are prepared based on the existing mineralogy, corundum is added, and each mixture is X-rayed. The software integrates the area under specific peaks (chosen for intensity and no overlap) in each sample, calculates the reference intensity ratios (RIRs) and calculates the percentage of each mineral based on the equation of Chung (1974). The attention to detail allows documentation and verification of the results yielding data of known quality.


2011 ◽  
Vol 383-390 ◽  
pp. 1749-1752
Author(s):  
Shigeo Shirakura ◽  
Shukuhei Kojima ◽  
Kazuhiro Tanaka ◽  
Hidetoshi Kita

Zeolite membranes were successfully synthesized from coal fly ash by hydrothermal treatment onto 10-cm-long tubular porous supports. The membranes were characterized from XRD analysis, SEM observation and the pervaporation performance. Under the optimized conditions, LTA-type membrane from coal fly ash showed fairly efficient for the dehydration of organic liquids. The maximum selectivity reached more than 3000 with accompanying flux as high as 3.0 kg/(m2•h) for separation of 90 wt% EtOH aqueous solution at 75 °C.


2014 ◽  
Vol 6 (3) ◽  
pp. 421-430 ◽  
Author(s):  
M.S. Sultana ◽  
M.I. Hossain ◽  
M.A. Rahman ◽  
M.H. Khan

Effects of rice husk ash and fly ash on properties of red clay collected from Naogaon district of Bangladesh were investigated. Different percentages of rice husk ash (RHA) and fly ash (5%, 10% and 15%) were thoroughly mixed with clay to analyse various physical and chemical properties of clay followed by heat treatment of 8000C to 11000C. The samples were tested for compressive strength, linear shrinkage, water absorption, porosity and bulk density. XRD analysis indicates the clay sample was mainly illite type. Water absorption and porosity increased with increasing percentage of ashes. The percentage of water absorption was within 6 to 10% for different mixture which may be suitable for ceramic and tiles purposes. Both fly ash and RHA of 15% could be used to improve some properties of clay. The optimum firing temperature for all the samples was 10500C. XRD pattern of clay with fly ash and rice husk ash heated at 10500C confirms the presence of feldspar and quartz as major phase and hematite (Fe2O3) and cristobalite phase as minor phase. This red clay deposits reinforced with different appropriate quantities of rice husk ash and fly ash could be used for various low temperature applications in industry and construction purposes. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i3.15343 J. Sci. Res. 6 (3), 421-430 (2014)


2012 ◽  
Vol 512-515 ◽  
pp. 110-114 ◽  
Author(s):  
Lei Hou ◽  
Jin Hong Li ◽  
Ling Xin Tong

Potassium feldspar (KAlSi3O8) can be used to extract potassium to solve the shortage of water soluble potash resources in China, but it will produce large amount of calcium silicate slag. Resource recycling from calcium silicate slag can be realized by synthesising wall materials. In this research, calcium silicate slag based lightweight wall materials have been successfully prepared by calcium silicate hydrates (CSH), lime and fly ash through autoklave process. Furthermore, the wall materials are charactered by strength determination, X-ray diffraction (XRD) analysis, and Scanning electron microscopy (SEM) analysis. The results show that the compressive strength is mainly influenced by the lime/fly ash mass ratio (L/F), CSH content and water/solid ratio (W/S). The compressive strength of 21.1-23.9 MPa and density of 0.87-0.91 g/cm3 are achieved respectively with the L/F value of 0.82-1.00, CSH content of 70 % and W/S of 0.9. The main hydrate product of wall materials is 11Å tobermorite [Ca5(OH)2Si6O16•4H2O], which is partly formed from the phase transformation of CSH, and partly produced by the reaction among raw materials during the process of autoclaving. The tobermorite is easy formed at low L/F value and it has a contribution to the low density for its flake-like structure that make the materials porous.


Author(s):  
Arief Rahmatulloh ◽  
Lukman Atmadja

Composite membrane is synthesized using well-synthesized chitosan as matrix crosslink with fly ash as filler and modified using 3-glicydyloxypro-pyltrimetoxy silane coupling agent. XRD analysis is carried out to characterize fly ash. While, FTIR characterization is conducted to determine the interaction between chitosan matrix and fly ash that has been modified using silane. The emergence of a new absorption at wave numbers 1118.64 cm-1 shows the inter-action between silane and fly ash. In addition, the widening of OH absorption shows that hydrogen bonds are formed between the silane and chitosan. The interaction is also demonstrated by the evenly distributed hills and valleys on AFM topography analysis. Characterizing the composite membrane with TGA analysis is done to determine thermal stability. While, proton conductivity of the composite membranes are measured using EIS. The highest conductivity values are obtained with the addition of 5 % silane concentration of 2.75x10-4 S cm-1 at room temperature, 3.995x10-4 S cm-1 at 40?C, and 3.909x10-4 S cm-1 at 60?C. On the contrary, measurements at 80?C, decomposition in all composite membranes occur. Thus, the crosslinked composite membrane chitosan - fly ash prepared by silane-crosslinking technique has potential to be applied with polymer electrolyte membrane fuel cell (PEMFC).


Sign in / Sign up

Export Citation Format

Share Document