scholarly journals Thermal, Physico-Chemical, and Mechanical Behaviour of Mass Concrete with Hybrid Blends of Bentonite and Fly Ash

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 60 ◽  
Author(s):  
Muhammad Ahad ◽  
Muhammad Ashraf ◽  
Rabinder Kumar ◽  
Mukhtar Ullah

Mass concrete has been commonly known for its thermal stresses which arise due to the entrapment of hydration temperature susceptible to thermal cracking. The utilization of mineral additives is a promising and widely adopted technique to mitigate such effects. This paper presents the thermal, physico-chemical, mechanical, and morphological behaviour of mass concrete with blends of bentonite (BT) and fly ash (FA). Apart from the rise in temperature due to hydration, the compressive strength, ultrasonic pulse velocity (UPV), differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and microstructure were studied. The results of this study revealed that the substitution of BT and FA significantly improved the compressive strength and development rate of UPV in the mass concrete samples. The FA concrete (FC) specimen presented the lowest temperature during the peak hours compared to all other concrete mixes studied in this research. Bentonite concrete (BC) was also found to be more effective in controlling the escalation of temperature in mass concrete. Scan electron microscopy (SEM) micrographs presented partially reacted FA particles in a mix. XRD and DTA analysis indicated that the concentration of calcium hydroxide (CH) declined by substituting FA and BT, specifically in ternary blends, which was due to the dilution effect and consumption of CH through the pozzolanic reaction.

2020 ◽  
Vol 6 (3) ◽  
pp. 431-445 ◽  
Author(s):  
Mohammad Adeel Khan ◽  
Bazid Khan ◽  
Khan Shahzada ◽  
Sajjad Wali Khan ◽  
Nauman Wahab ◽  
...  

In the marble industry, a lot of marble is wasted in the form of odd blocks of various sizes and slurry consisting of water and micro-fine particles. The slurry on drying converts into powder. Both slurry and powder have adverse effects on the environment. This research is focused on the gainful utilization of waste marble powder (WMP) by converting it into a valuable binding material. For this purpose, WMP and clay were collected, and their physical and chemical properties were determined. A mix of WMP and clay was prepared and burnt at a temperature around 1300 oC. The burnt mix was ground to powder form to get marble cement (MC). The MC was then used in mortar. The compressive and flexural strengths of mortar cubes and prisms were determined. Apart from this, X-ray diffraction (XRD) analysis, thermo-gravimetric analysis (TGA) and scanning electron microscopic (SEM) analysis were also carried out. The chemical composition showed that the MC has 52.5% di-calcium silicate (C2S) and 3.5% tri-calcium silicate (C3S).The  compressive strength of MC mortar after 28 days curing is 6.03 MPa, which is higher than M1 mortar of building code of Pakistan (5 MPa). The compressive strength of MC mortar after one year is 20.67 MPa, which is only 17% less than OPC mortar.


1985 ◽  
Vol 65 ◽  
Author(s):  
Andre Carles-Gibergues ◽  
Pierre-Claude Aitcin

ABSTRACTA silico-aluminous (Class F) French fly ash has been studied during the last ten years. While over this period the fly ash was produced from different bituminous coals, it has demonstrated high constancy in terms of its chemical and physical composition as well as cementitious properties. The first part of this paper gives a complete physico-chemical characterization of this fly ash, including chemical composition, mineralogical composition of its crystallized fraction, chemical composition of its glass, grain-size distribution, specific surface area, and bulk density. The second part deals with physico-chemical experiments performed to determine the cementitious components of this fly ash through its dissolution in pure water and in lime water. The lime water experiment was also carried out on a washed sample containing few residual sulfates. This series of experiments demonstrates the importance of sulfates in this particular fly ash, especially during the early stages of hydration. Their action results in the formation of ettringite. The cementitious role of these sulfates has been confirmed by comparing the compressive strength of mortar cubes containing washed and nonwashed fly ash. After 7 days, mortar cubes made with this fly ash showed a slight compressive strength increase when compared to a reference mix containing the same amount of quartz. This compressive strength increase can be related to the formation of C-S-H due to the pozzolanic reaction. After 8 months, the pozzolanic reaction had consumed most of the lime generated by the hydration of C2S and C3S, so that practically no portlandite remained in the mortar.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1728
Author(s):  
Peng Wen ◽  
Teng-Gen Hu ◽  
Yan Wen ◽  
Ke-Er Li ◽  
Wei-Peng Qiu ◽  
...  

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil’s oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.


Author(s):  
Nitu Bhatnagar ◽  
Avani Pareek

The present study is aimed to observe the difference in the Physico-Chemical characteristics of the marketed and formulated bhasma samples through X-Ray Diffraction analysis (XRD), Dynamic Light Scattering (DLS), Zeta potential, Thermo-Gravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray analysis (EDAX), apart from organoleptic methods. Inductively Coupled Plasma Mass Spectroscopy (ICPMS) analysis was also done to observe the presence of trace and heavy metals so that the safety of all these samples could be ensured. XRD shows variation in oxide nature of zinc as well crystallite size in all bhasma samples. DLS and SEM results show difference in particle size of marketed bhasma samples as compared to formulated Yashada bhasma. EDAX and ICPMS also confirm the alteration in elemental composition of all these bhasma samples. Thus, it can be concluded that these ayurvedic medicines should be prepared strictly using the formulation methods as mentioned in the Ayurvedic texts. This will help the prepared products to adopt the inherent quality of the ancient system of medicine, which shall be useful and devoid of any side effects for human consumption.


2019 ◽  
Vol 296 ◽  
pp. 173-179 ◽  
Author(s):  
Matěj Lédl ◽  
Lucie Galvánková ◽  
Rostislav Drochytka

This paper is focused on the effect of treatment of fly ash after selective non-catalytic reduction (SNCR) with tannin on autoclaved aerated concrete (AAC) production in order to reduce or stop ammonia leakage from the fresh mixture due to its alkalinity. A pure form of tannin and a tannin-based product „Farmatan“ were used as a treatment in dosage ranging from 0,5 g – 3 g of agent per 1 kg of fly ash. Efficient dosage was determined at 2 wt.% of fly ash by the speed of an indicator change due to gaseous ammonia diluted in water. The rheological properties of fresh mixtures were observed by consistency test in Viskomat showing that Farmatan causes delay of hydration. The results of bulk density and compressive strength testing revealed that Farmatan causes an increase of bulk density and at higher amount decreases the compressive strength because of thermal crack formation due to combined effect of delayed hydration and thixotropy. Using x-ray diffraction (XRD) analysis there were no differences in phase composition observed.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1562 ◽  
Author(s):  
Jurgita Malaiškienė ◽  
Olga Kizinievič ◽  
Viktor Kizinievič

The paper analyses the properties (chemical and mineral composition, microstructure, density, etc.) of recycled tannery sludge (TS) and the possibilities for using it in cement mortar mixture. Mortar specimens containing 3–12% of tannery sludge by weight of cement and 3–9% of tannery sludge by weight of sand were tested. Flowability, density, ultrasonic pulse velocity (UPV), flexural and compressive strength, water absorption and sorptivity of the mortar were analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis of tannery sludge and mortar are presented. The tests revealed that replacement of 6% of cement with tannery sludge in the mix increased flexural and compressive strength and UPV values, whereas water absorption decreased. SEM and XRD analysis revealed that specimens with tannery sludge contained lower amounts of ettringite and higher amounts of portlandite; the obtained structure was denser and contained more calcium hydrosilicates (C-S-H). Chromium leaching values in cement mortars were found not to exceed the limit values set forth in Directive 2003/33/EC.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Chou-Fu Liang ◽  
Hung-Yu Wang

This research intends to study the cementing potential of pulverized oyster shell, rich in calcium, when mixed with fly ash and soil. Cylindrical compacted soil and cubic lime specimens with different proportions of the shells and fly ash are made to study the strength variance. Soil, which is classified as CL in the USCS system, commercialized pulverized oyster shell, F-type fly ash, and lime are mixed in different weight percentages. Five sample groups are made to study the compressive strength of soil and lime specimens, respectively. The lime cubes are made with 0.45 W/B ratio and the cylindrical soils are compacted under the standard Procter compaction process with 20% moisture content. The results show that increment of shell quantity result to lower strength on both the soil and lime specimens. In a 56-day curing, the compressive strength of the lime cubes containing fly ash increases evidently while those carrying the shell get little progress in strength. The soil specimens containing fly ash gradually gain strength as curing proceeds. It suggests that mixtures of the shell and fly ash do not process any Pozzolanic reaction nor help to raise the unconfined strength of the compacted soil through the curing.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
V. M. Sounthararajan ◽  
A. Sivakumar

Investigations on the different supplementary cementitious materials based on the hardening properties and the optimized dosage in cementitious systems find the right choice of pozzolanic material. It is essential to combine various additive/admixtures in concrete in proper proportions to maximize the benefits resulting in cost savings in construction. In the recent years, production technology and composition of hydraulic cements affect the setting and early age behavior of cementitious material. The addition of fly ash in cement is one viable technology to derive maximum benefits in terms of the economy and improved pozzolanic reaction. Ultrasonic pulse velocity testing is a feasible method for evaluating the hardening properties of cementitious materials. In this study, an attempt was made to derive the engineering basis for understanding the development of hardness during hydration of fly ash (FA) based cementitious systems. The tests conducted using pulse velocity technique proved to be an effective method for characterizing the early strength gain properties of different cementitious systems.


Sign in / Sign up

Export Citation Format

Share Document