Detecting Expression Patterns of Wnt Pathway Components in Nematostella vectensis Embryos

Author(s):  
Shalika Kumburegama ◽  
Naveen Wijesena ◽  
Athula H. Wikramanayake
2021 ◽  
Author(s):  
Jonathan D Rumley ◽  
Elicia A Preston ◽  
Dylan Cook ◽  
Felicia L Peng ◽  
Amanda L Zacharias ◽  
...  

Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.


2008 ◽  
Vol 19 (6) ◽  
pp. 2588-2596 ◽  
Author(s):  
Kyung-Ah Kim ◽  
Marie Wagle ◽  
Karolyn Tran ◽  
Xiaoming Zhan ◽  
Melissa A. Dixon ◽  
...  

The R-Spondin (RSpo) family of secreted proteins is implicated in the activation of the Wnt signaling pathway. Despite the high structural homology between the four members, expression patterns and phenotypes in knockout mice have demonstrated striking differences. Here we dissected and compared the molecular and cellular function of all RSpo family members. Although all four RSpo proteins activate the canonical Wnt pathway, RSpo2 and 3 are more potent than RSpo1, whereas RSpo4 is relatively inactive. All RSpo members require Wnt ligands and LRP6 for activity and amplify signaling of Wnt3A, Wnt1, and Wnt7A, suggesting that RSpo proteins are general regulators of canonical Wnt signaling. Like RSpo1, RSpo2-4 antagonize DKK1 activity by interfering with DKK1 mediated LRP6 and Kremen association. Analysis of RSpo deletion mutants indicates that the cysteine-rich furin domains are sufficient and essential for the amplification of Wnt signaling and inhibition of DKK1, suggesting that Wnt amplification by RSpo proteins may be a direct consequence of DKK1 inhibition. Together, these findings indicate that RSpo proteins modulate the Wnt pathway by a common mechanism and suggest that coexpression with specific Wnt ligands and DKK1 may determine their biological specificity in vivo.


Author(s):  
Mengmeng Yang ◽  
Zongyu Li ◽  
Jianping Tao ◽  
Hao Hu ◽  
Zilin Li ◽  
...  

Abstract Purpose Recent clinical trials with agents targeting immune checkpoint pathway have emerged as an important therapeutic approach for a broad range of cancer types. Resveratrol has been shown to possess cancer preventive and therapeutic effects and has potential to be chemotherapeutic agent/adjuvant. Here, we assessed the effect of resveratrol on immune checkpoint pathways. Methods The expression patterns of Wnt components and PD-L1 were examined by Western blot, Chromatin immunoprecipitation (ChIP) was used for analysis of DNA–protein interaction, the promoter activity was determined by luciferase reporter assay, apoptosis was analyzed by flow cytometry and the ability of the resveratrol to modulate T cell function was assessed in a co-culture system. Results Although the dose-, and cell-type dependent effects of resveratrol on PD-L1 expression have been reported, we show here that resveratrol dose-dependently upregulates PD-L1 expression at the range of pharmacologic-achievable concentrations in lung cancer cells and that is essential for suppression of T-cell-mediated immune response. We also found that Wnt pathway is critical for mediating resveratrol-induced PD-L1 upregulation. Mechanistically, resveratrol activates SirT1 deacetylase to deacetylate and stabilize transcriptional factor Snail. Snail in turn inhibits transcription of Axin2, which leads in disassembly of destruction complex and enhanced binding of β-catenin/TCF to PD-L1 promoter. Conclusion We conclude that resveratrol is capable to suppress anti-tumor immunity by controlling mainly PD-L1 expression. This finding will extend the understanding of resveratrol in regulation of tumor immunity and is relevant to the debate on resveratrol supplements for lung cancer patients.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1615
Author(s):  
Barbora Putnová ◽  
Iveta Putnová ◽  
Miša Škorič ◽  
Marcela Buchtová

The Wnt signaling pathway is well known to be involved in many types of human cancer; however, in veterinary medicine, the investigation of individual Wnt members’ expression, and their role in or association with oral tumor pathogenesis, is still underevaluated. We aim to determine the expression pattern of Frizzled-6 (FZD6) as one of the Wnt receptors in two of the most common canine oral neoplastic lesions—canine oral squamous cell carcinoma (COSCC) and canine acanthomatous ameloblastoma (CAA). While COSCC is a malignant tumor with aggressive biological behavior and a tendency to metastasize, CAA is a benign tumor with high local invasiveness. In CAA, the expression of FZD6 was mostly located in the center of the epithelial tumorous tissue, and cells exhibiting features of squamous metaplasia were strongly positive. In well-differentiated COSCC, FZD6 was expressed in the tumorous epithelium as well as the tumorous stroma. There was a negative correlation between cytokeratin expression and FZD6 expression in COSCC, where the central parts of the epithelial tumorous tissue were often FZD6-negative. The non-differentiated COSCC with low expression of cytokeratin exhibited a diffuse FZD6 signal. The invasive front with areas of tumor budding exhibited high FZD6 expression with a loss of cytokeratin expression. Moreover, the expression of β-catenin and AXIN2 was increased in comparison to gingiva. In conclusion, our study revealed significant differences in the expression patterns and the levels of FZD6 between COSCC and CAA, indicating the differential engagement of the Wnt pathway in these tumors.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S186-S186
Author(s):  
C Lu ◽  
D Shah ◽  
A Wijnands ◽  
B Oldenburg ◽  
W C Yeh ◽  
...  

Abstract Background There is an increasing demand of agents that can promote mucosal healing in Inflammatory Bowel Disease (IBD). Wnt/β-catenin signaling plays a critical role in epithelial regeneration and repair, and stimulating regeneration in the damaged epithelium by modulating Wnt signaling has been suggested as a potential treatment option for IBD. To guide development of Wnt modulating therapeutic molecules for IBD, an understanding of how Wnt signaling may be altered in IBD tissues is required. While earlier work showed altered Wnt pathway gene expression in UC tissues, these studies failed to consider disease conditions (moderate vs severe) and patient treatment history on expression of the Wnt family genes. These previous studies utilized RT-qPCR or microarray and did not reveal how Wnt pathway gene expression might be affected specifically in the epithelium and in the adjacent stromal stem cell niche. Here we report our work investigating expression patterns of Wnt pathway genes in UC biopsies from 12 patients with moderate and severe disease. Patients had either received no anti-TNF treatment or had gone through anti-TNF treatment and partially responded to the treatment. Methods Expression of a set of Wnt pathway genes was assessed in UC colon and rectum biopsies by RNAscope in situ hybridization and compared to expression patterns in normal control colon. The genes included the Wnt target genes AXIN2, LGR5 and RNF43, Wnt ligands and the FZD5 and LRP6 receptors enriched in the intestinal epithelium as well as key Wnt signal modulators RSPO1-4. Results Expression of Wnt target genes were mildly reduced in the UC colon epithelium, while their expression in some crypts appeared much lower. Overall expression levels of Wnt pathway genes did not differ between moderate and severe UC colon and Wnt target gene expression was more affected in the anti-TNF treated colons, which may reflect more refractory disease. Expression of FZD5, LRP6 and the key niche factor RSPO2, was reduced in the UC colon. RSPOs are normally expressed in the stromal cells next to the crypt bottom stem cell compartment but this expression pattern was disrupted in the UC colon as a result of immune cell infiltration. Although expression of Wnts was induced in the UC colon tissues, the location of expression was altered due to tissue damage, potentially making the Wnts less accessible to the intestinal stem cells. Conclusion Reduced expression of Wnt receptors, RSPOs and Wnt target genes indicate insufficient Wnt signal induction in the damaged colon epithelium of UC patients. This suggests that repair of the damaged epithelium by Wnt agonist treatment may constitute a new mechanism of action and benefit patients with UC.


2014 ◽  
Vol 207 (4) ◽  
pp. 549-567 ◽  
Author(s):  
Mohammed I. Ahmed ◽  
Majid Alam ◽  
Vladimir U. Emelianov ◽  
Krzysztof Poterlowicz ◽  
Ankit Patel ◽  
...  

Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.


Sign in / Sign up

Export Citation Format

Share Document