Aging, Oxidative Stress, and Cardiovascular Disorders

2010 ◽  
pp. 259-275
Author(s):  
Yi Shi ◽  
Giovanni G. Camici ◽  
Thomas F. Lüscher
2022 ◽  
pp. 212-229
Author(s):  
Ashfaq Ahmad Shah ◽  
Sumaira Qayoom ◽  
Amit Gupta ◽  
Aqueel Ur Rehman

Current research on phytochemicals is mainly focused on novel phenolic and polyphenolic compounds expressing their potential as therapeutic agents in various diseases like cancer, autoimmune diseases, cardiovascular disorders, diabetes, oxidative stress-related diseases, as well as their properties to inhibit the growth and proliferation of infectious agents. Among the human physiological disorders, one of the most severe endocrine metabolic diseases is Diabetes mellitus which is a clinical disease distinguished by a deficit in the production of insulin or resistance to the action of insulin. Globally, diabetes is an increasing health concern which is now emerging as an epidemic. About 700-800 plants are exhibiting anti-diabetic activity that has been studied. As far as nanotechnology in diabetes research is concerned, it has made possible the buildout of novel glucose measurement as well as insulin delivery modalities that possess the potential to excellently enhance the quality of life of the diabetic patient.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fidèle Ntchapda ◽  
Christian Bonabe ◽  
Albert Donatien Atsamo ◽  
David Romain Kemeta Azambou ◽  
Yannick Bekono Fouda ◽  
...  

Background. Adansonia digitata is a plant used against cardiovascular disorders in African folk medicine. We assessed the effects of the aqueous extract of its stem bark on the development of hypertension in L-NAME-induced hypertensive rats. Methods. The animals were administered L-NAME once daily for 3 weeks (25 mg/kg, i.p.), concomitantly with aqueous extract of A. digitata stem bark (100 and 200 mg/kg, p.o.) or captopril (20 mg/kg, p.o.). Then, hemodynamic and electrocardiographic parameters, oxidative stress markers, and the lipid profile were assessed in the blood and heart, aorta, and kidney homogenates, and histopathological analyses were performed. Results. L-NAME-induced hypertensive control animals, but not the animals concomitantly treated with A. digitata extract, displayed increases in the mean arterial blood pressure (21.64% difference, p<0.001, vs. dose 200 mg/kg), systolic arterial blood pressure (21.33%, p<0.001), and the diastolic arterial blood pressure (21.84%, p<0.001). In addition, hypertensive control animals displayed (i) increases in serum triglycerides, total cholesterol, LDL, and creatinine levels, malondialdehyde and transaminase activities, and atherogenic index; (ii) decreases in serum HDL, catalase, reduced glutathione, and nitric oxide; and (iii) aorta wall thickening, inflammatory cell infiltration, and cell loss in the cardiac muscle and renal tissues. As captopril, the extract prevented hypertension-like changes in lipid profile, cardiac, hepatic, and renal affection indicators, and oxidative stress markers. Conclusion. Our findings suggest that the extract of A. digitata has antihypertensive and antioxidant effects in L-NAME-induced hypertension rat models. These effects partly justify the traditional medicine use against cardiovascular disorders.


Author(s):  
Adrian Podkowa ◽  
Agata Kryczyk-Poprawa ◽  
Włodzimierz Opoka ◽  
Bożena Muszyńska

AbstractThere are about 3000 species of mushrooms, which have a high amount of substances that are beneficial to human health, such as antioxidants. It is well known that oxidative stress plays an important role in the etiopathogenesis of many diseases, including cancer, cardiovascular disorders, and diseases of the central nervous system. One way to prevent homeostasis disorders that occur as a result of excessive production of pro-oxidative substances is to include the ingredients having antioxidant properties in the diet. Several compounds, such as those with phenolic and indole derivatives as well as carotenoids and some vitamins, exhibit antioxidant activity. These substances are present in many foods, including mushrooms. In addition, they have certain unique compounds that are not found in other sources (e.g., norbadione A). The present work discusses selected ingredients exhibiting antioxidant activity, which are found in various species of mushrooms as wells as describes the content of these compounds in the extracts obtained from mushrooms using artificial digestive juice.


2007 ◽  
Vol 292 (3) ◽  
pp. H1227-H1236 ◽  
Author(s):  
Carsten Berndt ◽  
Christopher Horst Lillig ◽  
Arne Holmgren

Reactive oxygen species (ROS) and the cellular thiol redox state are crucial mediators of multiple cell processes like growth, differentiation, and apoptosis. Excessive ROS production or oxidative stress is associated with several diseases, including cardiovascular disorders like ischemia-reperfusion. To prevent ROS-induced disorders, the heart is equipped with effective antioxidant systems. Key players in defense against oxidative stress are members of the thioredoxin-fold family of proteins. Of these, thioredoxins and glutaredoxins maintain a reduced intracellular redox state in mammalian cells by the reduction of protein thiols. The reversible oxidation of Cys-Gly-Pro-Cys or Cys-Pro(Ser)-Tyr-Cys active site cysteine residues is used in reversible electron transport. Thioredoxins and glutaredoxins belong to corresponding systems consisting of NADPH, thioredoxin reductase, and thioredoxin or NADPH, glutathione reductase, glutathione, and glutaredoxin, respectively. Thioredoxin as well as glutaredoxin activities appear to be very important for the progression and severity of several cardiovascular disorders. These proteins function not only as antioxidants, they inhibit or activate apoptotic signaling molecules like apoptosis signal-regulating kinase 1 and Ras or transcription factors like NF-κB. Thioredoxin activity is regulated by the endogenous inhibitor thioredoxin-binding protein 2 (TBP-2), indicating an important role of the balance between thioredoxin and TBP-2 levels in cardiovascular diseases. In this review, we will summarize cardioprotective effects of endogenous thioredoxin and glutaredoxin systems as well as the high potential in clinical applications of exogenously applied thioredoxin or glutaredoxin or the induction of endogenous thioredoxin and glutaredoxin systems.


2020 ◽  
Vol 21 (19) ◽  
pp. 7060
Author(s):  
Giovanni Pagano ◽  
Federico V. Pallardó ◽  
Alex Lyakhovich ◽  
Luca Tiano ◽  
Maria Rosa Fittipaldi ◽  
...  

A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential–and distinct—roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly relied on the use of only one MN to ARD-affected patients as, e.g., in the case of CoQ10 in CVD, or of ALA in T2D, possibly with the addition of other antioxidants. Only a few clinical and pre-clinical studies reported on the administration of two MNs, with beneficial outcomes, while no available studies reported on the combined administration of three MNs. Based on the literature also from pre-clinical studies, the present review is to recommend the design of clinical trials based on combinations of the three MNs.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 672
Author(s):  
Ying Sun ◽  
Elias Rawish ◽  
Henry M. Nording ◽  
Harald F. Langer

Cardiovascular diseases (CVD) constitute the main cause of death worldwide. Both inflammation and oxidative stress have been reported to be involved in the progress of CVD. It is well known that generation of oxidative stress during the course of CVD is involved in tissue damage and inflammation, causing deleterious effects such as hypertension, dysfunctional metabolism, endothelial dysfunction, stroke, and myocardial infarction. Remarkably, natural antioxidant strategies have been increasingly discovered and are subject to current scientific investigations. Here, we addressed the activation of immune cells in the context of ROS production, as well as how their interaction with other cellular players and further (immune) mediators contribute to metabolic and cardiovascular disorders. We also highlight how a dysregulated complement system contributes to immune imbalance and tissue damage in the context of increases oxidative stress. Additionally, modulation of hypothalamic oxidative stress is discussed, which may offer novel treatment strategies for type-2 diabetes and obesity. Together, we provide new perspectives on therapy strategies for CVD caused by oxidative stress, with a focus on oxidative stress.


Scientifica ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Paul Holvoet

Obesity has significant implications for healthcare, since it is a major risk factor for both type 2 diabetes and the metabolic syndrome. This syndrome is a common and complex disorder combining obesity, dyslipidemia, hypertension, and insulin resistance. It is associated with high atherosclerotic cardiovascular risk, which can only partially be explained by its components. Therefore, to explain how obesity contributes to the development of metabolic and cardiovascular disorders, more and better insight is required into the effects of personal and environmental stress on disease processes. In this paper, we show that obesity is a chronic inflammatory disease, which has many molecular mechanisms in common with atherosclerosis. Furthermore, we focus on the role of oxidative stress associated with obesity in the development of the metabolic syndrome. We discuss how several stress conditions are related to inflammation and oxidative stress in association with obesity and its complications. We also emphasize the relation between stress conditions and the deregulation of epigenetic control mechanisms by means of microRNAs and show how this impairment further contributes to the development of obesity, closing the vicious circle. Finally, we discuss the limitations of current anti-inflammation and antioxidant therapy to treat obesity.


Sign in / Sign up

Export Citation Format

Share Document