Analysis of the Potential for Pancreatic Cancer Metastasis In Vitro and In Vivo

Author(s):  
Chen Huang ◽  
Keping Xie
2019 ◽  
Vol 71 (5) ◽  
pp. 989-1002
Author(s):  
M. P. Krzykawski ◽  
R. Krzykawska ◽  
M. Paw ◽  
J. Czyz ◽  
J. Marcinkiewicz

Abstract Cancer metastasis is believed to happen through active intravasation but there might be also another way to metastasize. According to passive shedding hypothesis, proposed by Munn et al., tumor cells detach from the tumor mass and passively shed to blood stream through leaky blood vessels. We propose a novel In Vitro Migrational Selection (IVMS) assay that enables the pre-selection of invasive pancreatic cancer Panc-02 cells and create a model of passive shedding. We established invasive sub-cell line of murine pancreatic cancer Panc-02 cells (refered to as Panc02-RS), which exhibited higher metastatic potential in vivo and at the same time decrease in vitro migratory skills, comparing to the initial Panc-02 cell line. In in vitro cell cultures Panc-02 spontaneously detached from the cell culture surface and later reattached and colonized new areas. We believe it can mimic the new way of metastasis, namely passive shedding. We concentrated on Panc-02 model but believe that IVMS might be used to create sub cell lines of many solid tumors to model passive shedding. Our results support the passive shedding hypothesis.


Author(s):  
Samriddhi Arora ◽  
Jyoti Tanwar ◽  
Nutan Sharma ◽  
Suman Saurav ◽  
Rajender K. Motiani

Pancreatic cancer (PC) is one of the most lethal forms of cancers with 5-year mean survival rate of less than 10%. Most of the PC associated deaths are due to metastasis to secondary sites. Calcium (Ca2+) signaling plays a critical role in regulating hallmarks of cancer progression including cell proliferation, migration and apoptotic resistance. Store operated Ca2+ entry (SOCE) mediated by Orai1/2/3 channels is a highly regulated and ubiquitous pathway responsible for Ca2+ influx into non-excitable cells. In this study, we performed extensive bioinformatic analysis of publicly available datasets and observed that Orai3 expression is inversely associated with the mean survival time of PC patients. Orai3 expression analysis in a battery of PC cell lines corroborated its differential expression profile. We then carried out thorough Ca2+ imaging experiments in 6 PC cell lines and found that Orai3 forms a functional SOCE in PC cells. Our in vitro functional assays show that Orai3 regulates PC cell cycle progression, apoptosis and migration. Most importantly, our in vivo xenograft studies demonstrate a critical role of Orai3 in PC tumor growth and secondary metastasis. Mechanistically, Orai3 controls G1 phase progression, matrix metalloproteinase expression and epithelial-mesenchymal transition in PC cells. Taken together, this study for the first time reports that Orai3 drives aggressive phenotypes of PC cells i.e. migration in vitro and metastasis in vivo. Considering that Orai3 expression is inversely associated with the PC patients survival time, it appears to be a highly attractive therapeutic target.


2021 ◽  
Author(s):  
Chen Luo ◽  
Kang Lin ◽  
Cegui Hu ◽  
Xiaojian Zhu ◽  
Jinfeng Zhu ◽  
...  

Abstract Backgroud: The leading cause of death in pancreatic cancer (PC) patients is the progression of cancer metastasis. Long non-coding RNAs (lncRNAs) play an important role in regulating cancers, however its molecular basis in pancreatic cancer (PC) remains to be explored.Methods: In this study, bioinformatics methods are used to predict the potential pairs of lncRNAs in PC. The clinical significance of LINC01094 are determined by qRT-PCR and explored its correlation with clinicopathological parameters. The biological functions and potential mechanisms of LINC01094 in PC progression are studied in vivo and in vitro. Results: We observe that LINC01094 is markedly overexpressed in pancreatic tumors and is associated with poorer prognosis. Downregulation of LINC01094 decreases PC cell invasion and inhibits tumorigenesis and metastasis in mouse xenografts. LINC01094 acts as a sponge for miR-577, sequestering it and derepressing the expression of its endogenous target the RNA‐binding protein lin‐28 homolog B (LIN28B). Conclusions: Overall, LINC01094 upregulates LIN28B by sponging miR-577, thereby promoting PC proliferation and metastasis. This indicates that LINC01094 can be regarded as a new biomarker or therapeutic target for the treatment of PC.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


Pancreatology ◽  
2020 ◽  
Author(s):  
Lisi Peng ◽  
Lu Zhuang ◽  
Kun Lin ◽  
Yao Yao ◽  
Yang Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazim Husain ◽  
Domenico Coppola ◽  
Chung S. Yang ◽  
Mokenge P. Malafa

AbstractThe activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Thus, inhibition of colon cancer stem cell (CCSC) growth holds promise for CRC growth and metastasis prevention. We and others have shown that farnesyl dimethyl chromanol (FDMC) inhibits cancer cell growth and induces apoptosis in vitro and in vivo. We provide the first demonstration that FDMC inhibits CCSC viability, survival, self-renewal (spheroid formation), pluripotent transcription factors (Nanog, Oct4, and Sox2) expression, organoids formation, and Wnt/β-catenin signalling, as evidenced by comparisons with vehicle-treated controls. In addition, FDMC inhibits CCSC migration, invasion, inflammation (NF-kB), angiogenesis (vascular endothelial growth factor, VEGF), and metastasis (MMP9), which are critical tumour metastasis processes. Moreover, FDMC induced apoptosis (TUNEL, Annexin V, cleaved caspase 3, and cleaved PARP) in CCSCs and CCSC-derived spheroids and organoids. Finally, in an orthotopic (cecum-injected CCSCs) xenograft metastasis model, we show that FDMC significantly retards CCSC-derived tumour growth (Ki-67); inhibits inflammation (NF-kB), angiogenesis (VEGF and CD31), and β-catenin signalling; and induces apoptosis (cleaved PARP) in tumour tissues and inhibits liver metastasis. In summary, our results demonstrate that FDMC inhibits the CCSC metastatic phenotype and thereby supports investigating its ability to prevent CRC metastases.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Jiewei Lin ◽  
Zhiwei Xu ◽  
Junjie Xie ◽  
Xiaxing Deng ◽  
Lingxi Jiang ◽  
...  

AbstractAPOL1 encodes a secreted high-density lipoprotein, which has been considered as an aberrantly expressed gene in multiple cancers. Nevertheless, the role of APOL1 in the regulatory mechanisms of pancreatic cancer remains unknown and should be explored. We identified APOL1 was abnormally elevated in human pancreatic cancer tissues compared with that in adjacent tissues and was associated with poor prognosis. The effects of APOL1 in PC cell proliferation, cell cycle, and apoptosis was verified via functional in vitro and in vivo experiments. The results showed that knockdown of APOL1 significantly inhibited the proliferation and promoted apoptosis of pancreatic cancer. In addition, we identified APOL1 could be a regulator of NOTCH1 signaling pathway using bioinformatics tools, qRT-PCR, dual-luciferase reporter assay, and western blotting. In summary, APOL1 could function as an oncogene to promote proliferation and inhibit apoptosis through activating NOTCH1 signaling pathway expression in pancreatic cancer; therefore, it may act as a novel therapeutic target for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document