Microstructural Analysis of Nickel-Based Composite Coatings and Their Effect on Micro-hardness and Nano-indentation Behavior

Author(s):  
Rabah Azzoug ◽  
Fatah Hellal ◽  
Yamina Mebdoua
2007 ◽  
Vol 280-283 ◽  
pp. 1489-1492
Author(s):  
Zhen Ting Wang ◽  
Hua Hui Chen

Micro-nanostructured WC composite coatings were successfully fabricated by induced heating sintering method on the surface of Q235 steel .The microstructure, micro-hardness and the wear resistance of the composite coatings were studied .The results show that the microstructure of induced heat layer is mainly composed of Ni-based solid solutions and WC particles. And there exists excellent metallurgical bonding between coating and substrate. The wear resistance of micro-nanostructured WC Composite Coatings is increased by 1.5 times on an average as compared with that of micron.


2020 ◽  
Vol 54 (30) ◽  
pp. 4921-4928
Author(s):  
A Mohamed ◽  
MM Mohammed ◽  
AF Ibrahim ◽  
Omyma A El-Kady

In this study, copper powder was reinforced with different weight percentages of Al2O3 particles (0, 5, 10, and 15 wt.% Al2O3 coated Ag) to produce Cu-Al2O3 composites by mechanical alloying and uniaxial cold pressing/sintering route. Electro-less deposition was used to coat Al2O3 particles with Ag. The microstructure of the consolidated samples was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) elemental mapping. The porosity, microhardness, and wear behavior of the consolidated samples were also investigated as a function of Al2O3 content. The EDX mapping images reveal that the Al2O3 reinforcement particles were homogeneously distributed into the Cu matrix. Microstructural analysis shows that the addition of Al2O3 coated Ag particles improves density of the composites coating. SEM micrographs result shows that slight porosities exist in the composites produced. Furthermore, the average hardness of the composite coatings varies from 72.3 to 187.6 HV as Al2O3 content increases from 0 to 15 wt.%. The wear test results showed that the composite with higher Al2O3 content 15 wt.% showed the best wear resistance.


2018 ◽  
Vol 284 ◽  
pp. 1140-1143 ◽  
Author(s):  
I.N. Shcherbakov ◽  
V.V. Ivanov ◽  
A.A. Korotkiy

The possibility of receiving of compositional Ni-P coating modified by potassium polytitanate was analyzed. An aqueous solution to obtain the composite coatings on the basis of nickel-phosphorus alloy modified by K2О·nTiO2 onto steel details of the friction knots was developed. The complex oxide K2О·nTiO2 represents a layered material from the scaly form nanocrystals with 20-80 nm thick and "diameter" 280 nm. The velocity forming of the modified compositional Ni-P coating was investigated, and the optimal quantity of the introduced potassium polytitanate (8 g/l), as a modified compound into solution, was determined, too. The tribological characteristics and micro-hardness of the resulting coatings depending on the chemical composition of solution and surface state of the rider were investigated.


Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 80
Author(s):  
Wenlong Song ◽  
Zixiang Xia ◽  
Shoujun Wang ◽  
Qingge Zhang

To improve the tribological properties of pure MoS2 coating, the MoS2–Zr composite lubricating coatings were prepared on the WC/TiC/Co carbide surface utilizing radio frequency magnetron sputtering method combining with multiple arc ion plating technology. The effects of different Zr target currents on the surface morphologies, roughness, Zr content, adhesive force, thickness, microhardness and tribological behaviors of the composite coatings were systematically investigated. Results showed that the properties of MoS2 coating can be remarkably enhanced through co-deposition of a certain amount of Zr. As the Zr target current increased, the Zr content, surface roughness, thickness, and micro-hardness gradually increased, while the adhesive force of coatings increased first and then decreased. The friction behaviors and wear modes of the composite coatings both varied obviously with the increase of Zr current. The mechanism was mainly attributed to the different components and mechanical properties of the coatings caused by various Zr current.


2019 ◽  
Vol 158 ◽  
pp. 109934 ◽  
Author(s):  
Dmitrii Zaguliaev ◽  
Sergey Konovalov ◽  
Yurii Ivanov ◽  
Viktor Gromov

2012 ◽  
Vol 19 (02) ◽  
pp. 1250009 ◽  
Author(s):  
PENG LIU ◽  
WEI GUO ◽  
DAKUI HU ◽  
HUI LUO ◽  
YUANBIN ZHANG

The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ- (Fe, Ni) , FeAl , Ti3Al , TiC , TiNi , TiC0.3N0.7 , Ti2N , SiC , Ti5Si3 and TiNi . Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.


2017 ◽  
Vol 708 ◽  
pp. 1103-1109 ◽  
Author(s):  
Qianzhi Wang ◽  
Fei Zhou ◽  
Mauro Callisti ◽  
Tomas Polcar ◽  
Jizhou Kong ◽  
...  

2016 ◽  
Vol 23 (01) ◽  
pp. 1550082 ◽  
Author(s):  
PRASANNA GADHARI ◽  
PRASANTA SAHOO

The present study investigates the effect of titania particles on the micro-hardness, wear resistance, corrosion resistance and friction of electroless Ni–P–TiO2 composite coatings deposited on mild steel substrates at different annealing temperatures. The experimental results confirmed that the amount of TiO2 particles incorporated in the coatings increases with increase in the concentration of particles in the electroless bath. In presence of TiO2 particles, hardness, wear resistance and corrosion resistance of the coating improve significantly. At higher annealing temperature, wear resistance increases due to formation of hard Ni3P phase and incorporation of titania particles in the coated layer. Charge transfer resistance and corrosion current density of the coatings reduce with an increase in TiO2 particles, whereas corrosion potential increases. Microstructure changes and composition of the composite coating due to heat treatment are studied with the help of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) analysis.


Sign in / Sign up

Export Citation Format

Share Document