Modeling of Processes of Convective Transfer of Air Masses in the Atrium Spaces of Buildings

Author(s):  
Nellya Kolosova ◽  
Sergej Kolodyazhnyj ◽  
Vladimir Kozlov ◽  
Inna Pereslavceva
2020 ◽  
Vol 4 ◽  
pp. 78-95
Author(s):  
A.R. Ivanova ◽  
◽  
E.N. Skriptunova ◽  
N.I. Komasko ◽  
A.A. Zavialova ◽  
...  

A review of literature on the impact of dust and sand storms on the air transport operation is presented. Observational data on dust storms at the aerodromes of European Russia for the period of 2001-2019 are analyzed. The seasonal variations in dust transport episodes at aerodromes and its relationship with visibility changes are discussed. The characteristics of dusty air masses and advection are given. It is concluded that the frequency of dust transfer episodes for the aerodromes under study has decreased over the past five years, except for Gumrak aerodrome (Volgograd). Keywords: dust storm, sand storm, aviation, visibility, seasonal variations, aerodrome оf European Russia


1983 ◽  
Author(s):  
Marvin D. Kays ◽  
John T. Allen ◽  
Louis D. Duncan

1994 ◽  
Vol 20 ◽  
pp. 219-225 ◽  
Author(s):  
E.D. Waddington ◽  
D.L. Morse

10m firn temperatures are commonly used on the Antarctic plateau to estimate mean annual air temperatures. 10m firn temperatures measured at Taylor Dome (also referred to as McMurdo Dome in the literature), Antarctica, are influenced by a factor other than altitude and latitude that varies systematically across Taylor Dome. Some inter-related factors possibly contributing to the modern temperature variability are differences in sensible heat from warm or cold air masses, differences in wind strength and source region, differences in temperature inversion strength and differences in cloudiness. Our preliminary data are compatible with spatially variable katabatic winds that could control the winter temperature inversion strength to provide a large part of the signal. This has implications for paleoclimate studies.(1) Variations of the stable isotopes δ18O and δD from ice cores are a proxy for paleotemperature. The isotope thermometer is calibrated by comparing local isotope ratios with corresponding measured temperatures. In order to derive a useful isotope-temperature calibration, we must understand the processes that control the modern spatial variability of temperature. (2) In order to quantify past changes in local climate, we must understand processes that influence local spatial variability. If those processes differed in the past, ice-core climate reconstruction would be affected in two ways: through alteration of the geochemical record and through alteration of deep ice and firn temperatures.


2021 ◽  
Vol 11 (11) ◽  
pp. 4757
Author(s):  
Aleksandra Bączkiewicz ◽  
Jarosław Wątróbski ◽  
Wojciech Sałabun ◽  
Joanna Kołodziejczyk

Artificial Neural Networks (ANNs) have proven to be a powerful tool for solving a wide variety of real-life problems. The possibility of using them for forecasting phenomena occurring in nature, especially weather indicators, has been widely discussed. However, the various areas of the world differ in terms of their difficulty and ability in preparing accurate weather forecasts. Poland lies in a zone with a moderate transition climate, which is characterized by seasonality and the inflow of many types of air masses from different directions, which, combined with the compound terrain, causes climate variability and makes it difficult to accurately predict the weather. For this reason, it is necessary to adapt the model to the prediction of weather conditions and verify its effectiveness on real data. The principal aim of this study is to present the use of a regressive model based on a unidirectional multilayer neural network, also called a Multilayer Perceptron (MLP), to predict selected weather indicators for the city of Szczecin in Poland. The forecast of the model we implemented was effective in determining the daily parameters at 96% compliance with the actual measurements for the prediction of the minimum and maximum temperature for the next day and 83.27% for the prediction of atmospheric pressure.


2020 ◽  
Vol 294 ◽  
pp. 108149 ◽  
Author(s):  
Georg Jocher ◽  
Milan Fischer ◽  
Ladislav Šigut ◽  
Marian Pavelka ◽  
Pavel Sedlák ◽  
...  

2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


Sign in / Sign up

Export Citation Format

Share Document