scholarly journals Design and Principles of Linear Accelerators and Colliders

2020 ◽  
pp. 295-336
Author(s):  
J. Seeman ◽  
D. Schulte ◽  
J. P. Delahaye ◽  
M. Ross ◽  
S. Stapnes ◽  
...  

AbstractLinear accelerators (linacs) use alternating radiofrequency (RF) electromagnetic fields to accelerate charged particles in a straight line. Linacs were invented about 95 years ago and have seen many significant technical innovations since. A wide range of particle beams have been accelerated with linacs including beams of electrons, positrons, protons, antiprotons, and heavy ions. Linac parameter possibilities include pulsed versus continuous wave, low and high beam powers, low and high repetition rates, low transverse emittance beams, short bunches with small energy spreads, and accelerated multiple bunches in a single pulse. The number of linacs around the world has grown tremendously with thousands of linacs in present use, many for medical therapy, in industry, and for research and development in a broad spectrum of scientific fields. Researchers have developed accelerators for scientific tools in their own right, being awarded several Nobel prizes. Moreover, linacs and particle accelerators in general have enabled many discovery level science experiments in related fields, resulting in many Nobel prizes as well.

2008 ◽  
Vol 01 (01) ◽  
pp. 163-184 ◽  
Author(s):  
Robert W. Hamm

About half of the particle accelerators produced worldwide are used for industrial applications. These commercial systems utilize a wide range of accelerator technologies and cover numerous applications over a broad range of business segments. While this is not a high profile business, these "industrial accelerators" have a significant impact on people's lives and the world's economy, as many products contain parts that have been processed by charged particle beams. Wide scale adoption of many of these processing tools has resulted in the rapid growth of the business of producing and selling them. This paper is a review of the current status of industrial accelerators worldwide, including the technologies, the applications, the vendors and the sizes of the markets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chris Sundahl ◽  
Junki Makita ◽  
Paul B. Welander ◽  
Yi-Feng Su ◽  
Fumitake Kametani ◽  
...  

AbstractSuperconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1–2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200–240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration field in Nb3Sn, it has been proposed to coat Nb cavities with thin film Nb3Sn multilayers with dielectric interlayers. Here, we report the growth and multi-technique characterization of stoichiometric Nb3Sn/Al2O3 multilayers with good superconducting and RF properties. We developed an adsorption-controlled growth process by co-sputtering Nb and Sn at high temperatures with a high overpressure of Sn. The cross-sectional scanning electron transmission microscope images show no interdiffusion between Al2O3 and Nb3Sn. Low-field RF measurements suggest that our multilayers have quality factor comparable with cavity-grade Nb at 4.2 K. These results provide a materials platform for the development and optimization of high-performance SIS multilayers which could overcome the intrinsic limits of the Nb cavity technology.


2021 ◽  
Vol 11 (15) ◽  
pp. 7122
Author(s):  
Simona Mosca ◽  
Tobias Hansson ◽  
Maria Parisi

Optical frequency comb synthesizers with a wide spectral range are an essential tool for many research areas such as spectroscopy, precision metrology, optical communication, and sensing. Recent studies have demonstrated the direct generation of frequency combs, via second-order processes, that are centered on two different spectral regions separated by an octave. Here, we present the capability of optical quadratic frequency combs for broad-bandwidth spectral emission in unexplored regimes. We consider comb formation under phase-matched conditions in a continuous-wave pumped singly resonant second-harmonic cavity, with large intracavity power and control of the detuning over several cavity line widths. The spectral analysis reveals quite distinctive sidebands that arise far away from the pump, singularly or in a mixed regime together with narrowband frequency combs. Notably, by increasing the input power, the optical frequency lines evolve into widely spaced frequency clusters, and at maximum power, they appear in a wavelength range spanning up to 100 nm. The obtained results demonstrate the power of second-order nonlinearities for direct comb production within a wide range of pump wavelengths.


2009 ◽  
Vol 297 (4) ◽  
pp. G672-G680 ◽  
Author(s):  
P. Du ◽  
S. Li ◽  
G. O'Grady ◽  
L. K. Cheng ◽  
A. J. Pullan ◽  
...  

Gastric electrical stimulation (GES) involves the delivery of electrical impulses to the stomach for therapeutic purposes. New GES protocols are needed that are optimized for improved motility outcomes and energy efficiency. In this study, a biophysically based smooth muscle cell (SMC) model was modified on the basis of experimental data and employed in conjunction with experimental studies to define the effects of a large range of GES protocols on individual SMCs. For the validation studies, rat gastric SMCs were isolated and subjected to patch-clamp analysis during stimulation. Experimental results were in satisfactory agreement with simulation results. The results define the effects of a wide range of GES parameters (pulse width, amplitude, and pulse-train frequency) on isolated SMCs. The minimum pulse width required to invoke a supramechanical threshold response from SMCs (defined at −30 mV) was 65 ms (at 250-pA amplitude). The minimum amplitude required to invoke this threshold was 75 pA (at 1,000-ms pulse width). The amplitude of the invoked response beyond this threshold was proportional to the stimulation amplitude. A high-frequency train of stimuli (40 Hz; 10 ms, 150 pA) could invoke and maintain the SMC plateau phase while requiring 60% less power and accruing ∼30% less intracellular Ca2+ concentration during the plateau phase than a comparable single-pulse protocol could in a demonstrated example. Validated computational simulations are an effective strategy for efficiently identifying effective minimum-energy GES protocols, and pulse-train protocols may also help to reduce the power consumption of future GES devices.


1977 ◽  
Vol 232 (1) ◽  
pp. 45-49 ◽  
Author(s):  
D. L. Morgan

The short-range stiffness of smoothly but submaximally contracting isometric soleus muscles of anesthetised cats was measured by applying small fast stretches. The ratio of isometric tension to stiffness was plotted against tension over a wide range of muscle lengths and stimulus rates. The results fitted a straight line well, as predicted from crossbridge theory, showing the stiffness to be a function of tension only, independent of the combination of length and stimulus rate used to generate the tension. The major deviation from this line was attributed to incomplete fusion at low frequencies of stimulation. Values believed to be tendon compliance and crossbridge tension per unit of stiffness were found from the graph, and the tendon compliance correlated with the maximum muscle tension. Shortening the tendon by attaching nearer to the muscle changed the results in a manner consistent with the theory, provided that appropriate precautions were taken against slippage.


2020 ◽  
Vol 12 (9) ◽  
pp. 855-861
Author(s):  
Felix Rech ◽  
Kai Huang

AbstractFrom the prevention of natural disasters such as landslide and avalanches, to the enhancement of energy efficiencies in chemical and civil engineering industries, understanding the collective dynamics of granular materials is a fundamental question that are closely related to our daily lives. Using a recently developed multi-static radar system operating at 10 GHz (X-band), we explore the possibility of tracking a projectile moving inside a granular medium, focusing on possible sources of uncertainties in the detection and reconstruction processes. On the one hand, particle tracking with continuous-wave radar provides an extremely high temporal resolution. On the other hand, there are still challenges in obtaining tracer trajectories accurately. We show that some of the challenges can be resolved through a correction of the IQ mismatch in the raw signals obtained. Consequently, the tracer trajectories can be obtained with sub-millimeter spatial resolution. Such an advance can not only shed light on radar particle tracking, but also on a wide range of scenarios where issues relevant to IQ mismatch arise.


In this paper after mentioning the clinical radiation fields of 20 keV-450 MeV/u, they are characterized by the number of particles and their energy. Particle energy is the quantity that determines radiation penetration at the depth at which the tumor is situated (Fig. 1). The number of particles (or beam intensity) is the second major quantity that assures the administration of the absorbed dose in the tumor. The first application shows the radiation levels planned for various radiation fields. Prior to interacting with the medium, the intensity (or energy fluence rate) allows the determination of energy density, energy, power and relativistic force. In the interaction process, it determines the absorbed dose, kerma and exposure. Non-ionizing radiations in the EM spectrum are used as negative energy waves to accelerate particles charged into special installations called particle accelerators. The particles extracted from the accelerator are the source of the corpuscular radiation for high-energy radiotherapy. Of these, light particle beams (electrons and photons) for radiotherapy are generated by betatron, linac, microtron, and synchrotron and heavy particle beams (protons and heavy ions) are generated by cyclotron, isochronous cyclotron, synchro-cyclotron and synchrotron. The ionization dosimetry method used is the ionization chamber for both indirectly ionizing radiation (photons and neutrons) and for directly ionizing radiation (electrons, protons and carbon ions). Because the necessary energies for hadrons therapy are relatively high, 50-250 MeV for protons and 100-450 MeV/u for carbon ions, the alternative to replace non-ionizing radiation with relativistic laser radiation for generating clinical corpuscular radiation through radiation pressure acceleration mechanism (RPA) is presented.


2019 ◽  
Vol 17 (1) ◽  
pp. 183-194
Author(s):  
Anna Rogacka-Łukasik

ADR (Alternative Dispute Resolution), as a non-judicial resolution of disputes, is a wide range of mechanisms that aim to put an end to a conflict without the need of conducting a trial before the court. On the other hand, the modern form of ADR is ODR (Online Dispute Resolution) – an online dispute resolution system that is the expression of the newest means of communication and technical innovations in order to help in non-judicial dispute resolving. The goal of this publication is to present the ODR platform and, in particular, to describe the process of filing a complaint by the consumer by means of it.


Author(s):  
Fabrizio Niccoli ◽  
Valentina Giovinco ◽  
Cedric Garion ◽  
Carmine Maletta ◽  
Paolo Chiggiato

Recent studies on Shape Memory Alloy rings have been undertaken at the European Organization for Nuclear Research (CERN) to develop smart and leak-tight couplers for Ultra High Vacuum systems of particle accelerators. A special thermo-mechanical process (training) is needed to provide SMA rings with proper functional properties, that is to allow thermal mounting, dismounting, and leak tight coupling within a given service temperature window. Low temperature ring expansion is a crucial part of the training process as it gives suitable size, shape recovery properties, and thermal stability range to the SMA element. An analytical model, based on simplified elastic-plastic axisymmetric concepts, has been developed and implemented in a commercial software to simulate isothermal SMA rings expansions. It is particularly useful to predict the final size of a martensitic SMA coupler as a function of the initial dimensions and of the pre-deformation parameters. The effectiveness of the model has been demonstrated by analyzing the stress/deformation field occurring in a wide range of ring geometries for different load cases including martensite reorientation and plasticity. The predictions of the analytical model have been systematically compared with those obtained by axisymmetric finite element (FE) analyses based on elastic-plastic constitutive models and experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document