Geoprofiling in the Context of Civil Security: KDE Process Optimisation for Hotspot Analysis of Massive Emergency Location Data

Author(s):  
Julia Gonschorek
Liquidity ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 53-62
Author(s):  
Siti Maryama ◽  
Yayat Sujatna

The purpose of this study is to (1) analyzing the level of retail mix consumer satisfaction; (2) analyze the dominant variable in retail mix consumer satisfaction; (3) analyze the difference of retail mix consumer satisfaction performed. The observed of the retail industry is Alfamidi and Indomaret. The study was designed into a descriptive-quantitative method. The source of primary data obtained from the questionnaire of 100 respondents. The formulating variable of retail mix includes: merchandise assortments, pricing, customer services Store design and display, communication mix, and location. Data analyze by using descriptive, analysis of factors, and t-test. The result confirmed that the level of retail mix consumer satisfaction in both industry is relatively similar. However, it can be stated that the respondents were more satisfied to Indomaret compared with Alfamart.


2016 ◽  
Vol 136 (5) ◽  
pp. 142-147
Author(s):  
Yusuke Harada ◽  
Yoshinori Matsumoto

Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


1982 ◽  
Author(s):  
Edward W. Kempema ◽  
Erk Reimnitz ◽  
Peter W. Barnes
Keyword(s):  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dalton J. Hance ◽  
Katie M. Moriarty ◽  
Bruce A. Hollen ◽  
Russell W. Perry

Abstract Background Studies of animal movement using location data are often faced with two challenges. First, time series of animal locations are likely to arise from multiple behavioral states (e.g., directed movement, resting) that cannot be observed directly. Second, location data can be affected by measurement error, including failed location fixes. Simultaneously addressing both problems in a single statistical model is analytically and computationally challenging. To both separate behavioral states and account for measurement error, we used a two-stage modeling approach to identify resting locations of fishers (Pekania pennanti) based on GPS and accelerometer data. Methods We developed a two-stage modelling approach to estimate when and where GPS-collared fishers were resting for 21 separate collar deployments on 9 individuals in southern Oregon. For each deployment, we first fit independent hidden Markov models (HMMs) to the time series of accelerometer-derived activity measurements and apparent step lengths to identify periods of movement and resting. Treating the state assignments as given, we next fit a set of linear Gaussian state space models (SSMs) to estimate the location of each resting event. Results Parameter estimates were similar across collar deployments. The HMMs successfully identified periods of resting and movement with posterior state assignment probabilities greater than 0.95 for 97% of all observations. On average, fishers were in the resting state 63% of the time. Rest events averaged 5 h (4.3 SD) and occurred most often at night. The SSMs allowed us to estimate the 95% credible ellipses with a median area of 0.12 ha for 3772 unique rest events. We identified 1176 geographically distinct rest locations; 13% of locations were used on > 1 occasion and 5% were used by > 1 fisher. Females and males traveled an average of 6.7 (3.5 SD) and 7.7 (6.8 SD) km/day, respectively. Conclusions We demonstrated that if auxiliary data are available (e.g., accelerometer data), a two-stage approach can successfully resolve both problems of latent behavioral states and GPS measurement error. Our relatively simple two-stage method is repeatable, computationally efficient, and yields directly interpretable estimates of resting site locations that can be used to guide conservation decisions.


Author(s):  
Munazza Fatima ◽  
Kara J. O’Keefe ◽  
Wenjia Wei ◽  
Sana Arshad ◽  
Oliver Gruebner

The outbreak of SARS-CoV-2 in Wuhan, China in late December 2019 became the harbinger of the COVID-19 pandemic. During the pandemic, geospatial techniques, such as modeling and mapping, have helped in disease pattern detection. Here we provide a synthesis of the techniques and associated findings in relation to COVID-19 and its geographic, environmental, and socio-demographic characteristics, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) methodology for scoping reviews. We searched PubMed for relevant articles and discussed the results separately for three categories: disease mapping, exposure mapping, and spatial epidemiological modeling. The majority of studies were ecological in nature and primarily carried out in China, Brazil, and the USA. The most common spatial methods used were clustering, hotspot analysis, space-time scan statistic, and regression modeling. Researchers used a wide range of spatial and statistical software to apply spatial analysis for the purpose of disease mapping, exposure mapping, and epidemiological modeling. Factors limiting the use of these spatial techniques were the unavailability and bias of COVID-19 data—along with scarcity of fine-scaled demographic, environmental, and socio-economic data—which restrained most of the researchers from exploring causal relationships of potential influencing factors of COVID-19. Our review identified geospatial analysis in COVID-19 research and highlighted current trends and research gaps. Since most of the studies found centered on Asia and the Americas, there is a need for more comparable spatial studies using geographically fine-scaled data in other areas of the world.


Sign in / Sign up

Export Citation Format

Share Document