Saccharomyces and Their Potential Applications in Food and Food Processing Industries

Author(s):  
Vincent Vineeth Leo ◽  
Vinod Viswanath ◽  
Purbajyoti Deka ◽  
Zothanpuia ◽  
Dwivedi Rohini Ramji ◽  
...  
Author(s):  
Gitishree Das ◽  
Jayanta Kumar Patra ◽  
Spiros Paramithiotis ◽  
Han-Seung Shin

Nanotechnology is a connection among various branches of science with potential applications that extend over a variety of scientific disciplines, particularly in the food science and technology fields. For nanomaterial applications in food processing, such as antimicrobials on food contact surfaces along with the improvement of biosensors, electrospun nanofibers are the most intensively studied ones. As in the case of every developing skill, an assessment from a sustainability point of view is necessary to address the balance between its benefits to civilization and the unwanted effects on human health and the environment. The current review aimed to provide an update regarding the sustainability of current nanotechnology applications in food science technology, environment, and public health together with a risk assessment and toxicity evaluation.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2624
Author(s):  
Liege A. Pascoalino ◽  
Filipa S. Reis ◽  
Miguel A. Prieto ◽  
João C. M. Barreira ◽  
Isabel C. F. R. Ferreira ◽  
...  

Food processing generates a large amount of bio-residues, which have become the focus of different studies aimed at valorizing this low-cost source of bioactive compounds. High fruit consumption is associated with beneficial health effects and, therefore, bio-waste and its constituents arouse therapeutic interest. The present work focuses on the main Portuguese fruit crops and revises (i) the chemical constituents of apple, orange, and pear pomace as potential sources of functional/bioactive compounds; (ii) the bioactive evidence and potential therapeutic use of bio-waste generated in the processing of the main Portuguese fruit crops; and (iii) potential applications in the food, nutraceutical, pharmaceutical, and cosmetics industries. The current evidence of the effect of these bio-residues as antioxidant, anti-inflammatory, and antimicrobial agents is also summarized. Conclusions of the revised data are that these bio-wastes hold great potential to be employed in specific nutritional and pharmaceutical applications.


2017 ◽  
Vol 56 (4) ◽  
pp. 311
Author(s):  
Z. TZIKAS (Ζ. ΤΖΗΚΑΣ) ◽  
I. AMBROSIADIS (Ι. ΑΜΒΡΟΣΙΑΔΗΣ)

Some properties and applications of the transglutaminase (TG), with particular focus on TG derived from microorganisms (MTG), are described. TG catalyzes an acyltransfer reaction in which the γ-carboxyamide groups of pep tidebound glutamine residues are the acyl-donors. Most food proteins, such as legume globulins, wheat gluten and gliadin, egg yolk and egg white proteins, meat actins and myosins, gelatin, collagen, milk caseins, a-lactalbumin and /Mactoglobulin, could be crosslinked by TG. TG are present in an extremely broad spectrum of living organisms, such as humans, most advanced animals, birds, amphibians, fish, plants and microorganisms. Commercial TG has been merely obtained from animal tissues for decades. The limited supply and the complicated separation and purification procedure for obtaining tissue TG have resulted in an extremely high price of the enzyme, which hampers a wide application in food processing. MTG, mass-produced at low cost by fermentation, catalyses the cross-linking of most food proteins through the formation of c-(v-glutamyl) lysine bonds, in the same way as wellknown mammalian enzymes. However, MTG is quite unique from other mammalian TG, since it is totally independent of Ca + and has a relatively lower molecular weight. The results of many studies suggest that MTG has many potential applications in food processing. Food treated with MTG appeared to have an improved flavour, appearance and texture. In addition, this enzyme can increase shelf-life and reduce allergenicity of certain foods. Using additional components, such as sodium ceseinate, maltodextrine and starch, MTG can be customized for use in many other foods, even those with lower protein content. In this respect, MTG technology will be an essential tool for producing acceptable protein foods from non-animal proteins in the future.


2020 ◽  
Vol 83 (5) ◽  
pp. 794-800
Author(s):  
SHANI CRAIGHEAD ◽  
SARAH HERTRICH ◽  
GLENN BOYD ◽  
JOSEPH SITES ◽  
BRENDAN A. NIEMIRA ◽  
...  

ABSTRACT Cilantro was recently identified as a vehicle for protozoan illness. Current postharvest practices are not sufficient to inactivate protozoa on cilantro. Cold plasma is an emerging nonthermal waterless technology with potential applications in food processing that are currently being investigated to enhance the safety of herbs. The purpose of this study was to determine the impact of cold atmospheric plasma (CP) on the viability of Cryptosporidium parvum oocysts on cilantro. C. parvum oocysts were inoculated onto cilantro and treated with a CP jet for 0, 30, 90, and 180 s at a working distance of 10 cm with a flow of 1.42 × 10−3 m3/s. Oocyst viability was determined using HCT-8 cell culture infectivity assays. Overall, each treatment significantly reduced oocyst infectivity compared with the 0-s treatment control (P ≤ 0.02). Log inactivations of oocysts observed on cilantro were 0.84, 1.23, and 2.03 for the 30-, 90-, and 180-s treatment times, respectively. Drying and darkening of cilantro leaves was observed with treatments longer than 30 s. CP can reduce C. parvum infectivity on cilantro. With further research and optimization, this treatment technology has potential applications in postharvest processing of cilantro. HIGHLIGHTS


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 578 ◽  
Author(s):  
Justin Horn ◽  
Rachel Kapelner ◽  
Allie Obermeyer

Protein-containing polyelectrolyte complexes (PECs) are a diverse class of materials, composed of two or more oppositely charged polyelectrolytes that condense and phase separate near overall charge neutrality. Such phase-separation can take on a variety of morphologies from macrophase separated liquid condensates, to solid precipitates, to monodispersed spherical micelles. In this review, we present an overview of recent advances in protein-containing PECs, with an overall goal of defining relevant design parameters for macro- and microphase separated PECs. For both classes of PECs, the influence of protein characteristics, such as surface charge and patchiness, co-polyelectrolyte characteristics, such as charge density and structure, and overall solution characteristics, such as salt concentration and pH, are considered. After overall design features are established, potential applications in food processing, biosensing, drug delivery, and protein purification are discussed and recent characterization techniques for protein-containing PECs are highlighted.


Beverages ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 56 ◽  
Author(s):  
Piergiorgio Comuzzo ◽  
Sonia Calligaris

High pressure homogenization (HPH) is an emerging technology with several possible applications in the food sector, such as nanoemulsion preparation, microbial and enzymatic inactivation, cell disruption for the extraction of intracellular components, as well as modification of food biopolymer structures to steer their functionalities. All these effects are attributable to the intense mechanical stresses, such as cavitation and shear forces, suffered by the product during the passage through the homogenization valve. The exploitation of the disruptive forces delivered during HPH was also recently proposed for winemaking applications. In this review, after a general description of HPH and its main applications in food processing, the survey is extended to the use of this technology for the production of wine and fermented beverages, particularly focusing on the effects of HPH on the inactivation of wine microorganisms and the induction of yeast autolysis. Further enological applications of HPH technology, such as its use for the production of inactive dry yeast preparations, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document