scholarly journals Transglutaminases - a review with special reference to microbial transglutaminase and its application in food processing

2017 ◽  
Vol 56 (4) ◽  
pp. 311
Author(s):  
Z. TZIKAS (Ζ. ΤΖΗΚΑΣ) ◽  
I. AMBROSIADIS (Ι. ΑΜΒΡΟΣΙΑΔΗΣ)

Some properties and applications of the transglutaminase (TG), with particular focus on TG derived from microorganisms (MTG), are described. TG catalyzes an acyltransfer reaction in which the γ-carboxyamide groups of pep tidebound glutamine residues are the acyl-donors. Most food proteins, such as legume globulins, wheat gluten and gliadin, egg yolk and egg white proteins, meat actins and myosins, gelatin, collagen, milk caseins, a-lactalbumin and /Mactoglobulin, could be crosslinked by TG. TG are present in an extremely broad spectrum of living organisms, such as humans, most advanced animals, birds, amphibians, fish, plants and microorganisms. Commercial TG has been merely obtained from animal tissues for decades. The limited supply and the complicated separation and purification procedure for obtaining tissue TG have resulted in an extremely high price of the enzyme, which hampers a wide application in food processing. MTG, mass-produced at low cost by fermentation, catalyses the cross-linking of most food proteins through the formation of c-(v-glutamyl) lysine bonds, in the same way as wellknown mammalian enzymes. However, MTG is quite unique from other mammalian TG, since it is totally independent of Ca + and has a relatively lower molecular weight. The results of many studies suggest that MTG has many potential applications in food processing. Food treated with MTG appeared to have an improved flavour, appearance and texture. In addition, this enzyme can increase shelf-life and reduce allergenicity of certain foods. Using additional components, such as sodium ceseinate, maltodextrine and starch, MTG can be customized for use in many other foods, even those with lower protein content. In this respect, MTG technology will be an essential tool for producing acceptable protein foods from non-animal proteins in the future.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2624
Author(s):  
Liege A. Pascoalino ◽  
Filipa S. Reis ◽  
Miguel A. Prieto ◽  
João C. M. Barreira ◽  
Isabel C. F. R. Ferreira ◽  
...  

Food processing generates a large amount of bio-residues, which have become the focus of different studies aimed at valorizing this low-cost source of bioactive compounds. High fruit consumption is associated with beneficial health effects and, therefore, bio-waste and its constituents arouse therapeutic interest. The present work focuses on the main Portuguese fruit crops and revises (i) the chemical constituents of apple, orange, and pear pomace as potential sources of functional/bioactive compounds; (ii) the bioactive evidence and potential therapeutic use of bio-waste generated in the processing of the main Portuguese fruit crops; and (iii) potential applications in the food, nutraceutical, pharmaceutical, and cosmetics industries. The current evidence of the effect of these bio-residues as antioxidant, anti-inflammatory, and antimicrobial agents is also summarized. Conclusions of the revised data are that these bio-wastes hold great potential to be employed in specific nutritional and pharmaceutical applications.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
R. W. Rambach ◽  
J. Taiber ◽  
C. M. L. Scheck ◽  
C. Meyer ◽  
J. Reboud ◽  
...  

Abstract We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.


2021 ◽  
Vol 7 (7) ◽  
pp. 541
Author(s):  
Lúcia P. S. Pimenta ◽  
Dhionne C. Gomes ◽  
Patrícia G. Cardoso ◽  
Jacqueline A. Takahashi

Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4141
Author(s):  
Tingting Wang ◽  
Wangbingfei Chen ◽  
Tingting Dong ◽  
Zihao Lv ◽  
Siming Zheng ◽  
...  

Towards the goal of developing scalable, economical and effective antimicrobial textiles to reduce infection transmission, here we prepared color-variable photodynamic materials comprised of photosensitizer (PS)-loaded wool/acrylic (W/A) blends. Wool fibers in the W/A blended fabrics were loaded with the photosensitizer rose bengal (RB), and the acrylic fibers were dyed with a variety of traditional cationic dyes (cationic yellow, cationic blue and cationic red) to broaden their color range. Investigations on the colorimetric and photodynamic properties of a series of these materials were implemented through CIELab evaluation, as well as photooxidation and antibacterial studies. Generally, the photodynamic efficacy of these dual-dyed fabrics was impacted by both the choice, and how much of the traditional cationic dye was employed in the dyeing of the W/A fabrics. When compared with the PS-only singly-dyed material, RB-W/A, that showed a 99.97% (3.5 log units; p = 0.02) reduction of Staphylococcus aureus under visible light illumination (λ ≥ 420 nm, 60 min), the addition of cationic dyes led to a slight decrease in the photoinactivation ability of the dual-dyed fabrics, but was still able to achieve a 99.3% inactivation of S. aureus. Overall, our findings demonstrate the feasibility and potential applications of low cost and color variable RB-loaded W/A blended fabrics as effective self-disinfecting textiles against pathogen transmission.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Liang Chen ◽  
Peng He ◽  
Zhifeng Jia ◽  
Xinyuan Zhu ◽  
Deyue Yan

AbstractAn economical strategy to prepare hyperbranched poly(sulfone-amine) modified β-cyclodextrins (HPSA-m-CDs) from natural β-cyclodextrin (β-CD) and other commercially available materials has been reported. The final product has many good properties of hyperbranched poly(sulfone-amine)s (good solubility, low viscosity etc.), while its inclusion ability can also be well kept. It is a feasible approach to prepare functionalized modified cyclodextrin at very low cost, and may have potential applications in the fields of catalysis, drug delivery, food additives, etc.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Yawei Xu ◽  
Lihong Dong ◽  
Haidou Wang ◽  
Jiannong Jing ◽  
Yongxiang Lu

Purpose Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs). Design/methodology/approach The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed. Findings PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch. Originality/value This paper provides a detailed and timely review of the rapidly growing research in PSST.


Author(s):  
João Marcos Pereira Galúcio ◽  
Sorrel Godinho Barbosa de Souza ◽  
Arthur Abinader Vasconcelos ◽  
Alan Kelbis Oliveira Lima ◽  
Kauê Santana da Costa ◽  
...  

: Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1–100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3524 ◽  
Author(s):  
Priscila Sutto-Ortiz ◽  
María de los Angeles Camacho-Ruiz ◽  
Manuel R. Kirchmayr ◽  
Rosa María Camacho-Ruiz ◽  
Juan Carlos Mateos-Díaz ◽  
...  

Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging toStreptomyces(73%) andMicromonospora(10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of theStreptomycesgenus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel PLAs with potential applications in biotechnology.


2020 ◽  
Vol 48 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Jian-Li HAN ◽  
Qing-Hui CHEN ◽  
Mei-Yi ZOU ◽  
Yu LU ◽  
Ming WEI ◽  
...  

2010 ◽  
Vol 63 ◽  
pp. 282-286 ◽  
Author(s):  
Leszek Chlubny ◽  
Jerzy Lis ◽  
Mirosław M. Bućko

Some of ternary materials in the Ti-Al-C system are called MAX-phases and are characterised by heterodesmic layer structure. Their specific structure consisting of covalent and metallic chemical bonds influence its semi-ductile features locating them on the boundary between metals and ceramics, which may lead to many potential applications, for example as a part of a ceramic armour. Ti2AlC is one of this nanolaminate materials. Self-propagating High-temperature Synthesis (SHS) was applied to obtain sinterable powders of Ti2AlC Utilization of heat produced in exothermal reaction in adiabatic conditions to sustain process until all substrates are transformed into product is one of the advantages of the method that result in low energy consumption and low cost combined with high efficiency. Different substrates were used to produce fine powders of ternary material. Phase compositions of obtained powder were examined by XRD method. Than selected powders were used for sintering in various temperature both in a presureless sintering and hot-pressing in argon atmosphere. Properties and phase composition of obtained products were examined.


Sign in / Sign up

Export Citation Format

Share Document