Membrane Homeostasis upon Nutrient (C, N, P) Limitation

Author(s):  
F. Schubotz
Keyword(s):  
2003 ◽  
Vol 48 (1) ◽  
pp. 87-94 ◽  
Author(s):  
B. Lesjean ◽  
R. Gnirss ◽  
C. Adam ◽  
M. Kraume ◽  
F. Luck

The enhanced biological phosphorus removal (EBPR) process was adapted to membrane bioreactor (MBR) technology. One bench-scale plant (BSP, 200-250 L) and two pilot plants (PPs, 1,000-3,000 L each) were operated under several configurations, including pre-denitrification and post-denitrification without addition of carbon source, and two solid retention times (SRT) of 15 and 26 d. The trials showed that efficient Bio-P removal can be achieved with MBR systems, in both pre- and post-denitrification configurations. EBPR dynamics could be clearly demonstrated through batch-tests, on-line measurements, profile analyses, P-spiking trials, and mass balances. High P-removal performances were achieved even with high SRT of 26 d, as around 9 mgP/L could be reliably removed. After stabilisation, the sludge exhibited phosphorus contents of around 2.4%TS. When spiked with phosphorus (no P-limitation), P-content could increase up to 6%TS. The sludge is therefore well suited to agricultural reuse with important fertilising values. Theoretical calculations showed that increased sludge age should result in a greater P-content. This could not be clearly demonstrated by the trials. This effect should be all the more significant as the influent is low in suspended solids.


2021 ◽  
Vol 153 (2) ◽  
pp. 155-176
Author(s):  
Denise A. Devotta ◽  
Jennifer M. Fraterrigo ◽  
Patrick B. Walsh ◽  
Stacey Lowe ◽  
Daniel K. Sewell ◽  
...  

2021 ◽  
Author(s):  
Rebekah A. Jones ◽  
Holly Shropshire ◽  
Caimeng Zhao ◽  
Andrew Murphy ◽  
Ian Lidbury ◽  
...  

AbstractPseudomonas aeruginosa is a nosocomial pathogen with a prevalence in immunocompromised individuals and is particularly abundant in the lung microbiome of cystic fibrosis patients. A clinically important adaptation for bacterial pathogens during infection is their ability to survive and proliferate under phosphorus-limited growth conditions. Here, we demonstrate that P. aeruginosa adapts to P-limitation by substituting membrane glycerophospholipids with sugar-containing glycolipids through a lipid renovation pathway involving a phospholipase and two glycosyltransferases. Combining bacterial genetics and multi-omics (proteomics, lipidomics and metatranscriptomic analyses), we show that the surrogate glycolipids monoglucosyldiacylglycerol and glucuronic acid-diacylglycerol are synthesised through the action of a new phospholipase (PA3219) and two glycosyltransferases (PA3218 and PA0842). Comparative genomic analyses revealed that this pathway is strictly conserved in all P. aeruginosa strains isolated from a range of clinical and environmental settings and actively expressed in the metatranscriptome of cystic fibrosis patients. Importantly, this phospholipid-to-glycolipid transition comes with significant ecophysiological consequence in terms of antibiotic sensitivity. Mutants defective in glycolipid synthesis survive poorly when challenged with polymyxin B, a last-resort antibiotic for treating multi-drug resistant P. aeruginosa. Thus, we demonstrate an intriguing link between adaptation to environmental stress (nutrient availability) and antibiotic resistance, mediated through membrane lipid renovation that is an important new facet in our understanding of the ecophysiology of this bacterium in the lung microbiome of cystic fibrosis patients.


2010 ◽  
Vol 67 (8) ◽  
pp. 1291-1302 ◽  
Author(s):  
Helder Cunha Pereira ◽  
Norman Allott ◽  
Catherine Coxon

This paper compares, for the first time, nutrient levels and chlorophyll a measured in a set of seasonal lakes with those reported for permanent lakes in the literature. Twenty-two turloughs (karstic seasonal lakes) in western Ireland were sampled monthly from the onset of flooding (October) until they dried out (6 to 9 months). The turloughs showed similar levels of nutrients and chlorophyll a to those reported for Irish and international lakes. Chlorophyll a peaked between November and February in the majority of turloughs, sometimes with values higher than those measured in mesotrophic lakes in summer. A significant log-linear regression was found between total phosphorus and chlorophyll a, which suggests P limitation of algal biomass in the majority of the turloughs. The regression characteristics were not significantly different than those described in similar studies of permanent lakes. Patterns in seasonal variation of nutrients are also presented, their underlying causes being discussed in relation to their transport within catchments. Our results show that despite being predominantly winter phenomena, turloughs can be as productive as permanent lakes.


2018 ◽  
Vol 19 (11) ◽  
pp. 3683 ◽  
Author(s):  
Santosh KC ◽  
Meiya Liu ◽  
Qunfeng Zhang ◽  
Kai Fan ◽  
Yuanzhi Shi ◽  
...  

The qualities of tea (Camellia sinensis) are not clearly understood in terms of integrated leading molecular regulatory network mechanisms behind inorganic phosphate (Pi) limitation. Thus, the present work aims to elucidate transcription factor-dependent responses of quality-related metabolites and the expression of genes to phosphate (P) starvation. The tea plant organs were subjected to metabolomics analysis by GC×GC-TOF/MS and UPLC-Q-TOF/MS along with transcription factors and 13 metabolic genes by qRT-PCR. We found P starvation upregulated SPX2 and the change response of Pi is highly dependent on young shoots. This led to increased change in abundance of carbohydrates (fructose and glucose), amino acids in leaves (threonine and methionine), and root (phenylalanine, alanine, tryptophan, and tyrosine). Flavonoids and their glycosides accumulated in leaves and root exposed to P limitation was consistent with the upregulated expression of anthocyanidin reductase (EC 1.3.1.77), leucoanthocyanidin dioxygenase (EC 1.4.11.19) and glycosyltransferases (UGT78D1, UGT78D2 and UGT57L12). Despite the similar kinetics and high correlation response of Pi and SPX2 in young shoots, predominating theanine and other amino acids (serine, threonine, glutamate, valine, methionine, phenylalanine) and catechin (EGC, EGCG and CG) content displayed opposite changes in response to Pi limitation between Fengqing and Longjing-43 tea cultivars.


2009 ◽  
Vol 66 (9) ◽  
pp. 1435-1448 ◽  
Author(s):  
Courtney R. Salm ◽  
Jasmine E. Saros ◽  
Sherilyn C. Fritz ◽  
Christopher L. Osburn ◽  
David M. Reineke

We investigated patterns of primary production across prairie saline lakes in the central and northern Great Plains of the United States. Based on comparative lake sampling in 2004, seasonal predictors of algal primary productivity were identified within subsets of similar lakes using a combination of Akaike’s information criterion (AIC) and classification and regression trees (CART). These models indicated complex patterns of nutrient limitation by nitrogen (N), phosphorus (P), and iron (Fe) within different lake groups. Nutrient enrichment assays (control, + Fe, + N, + P, + N + P) were performed in spring and summer of 2006 to determine if phytoplankton in selected lakes followed predicted patterns of nutrient limitation. Both the comparative lake sampling and experimental results indicated that N limitation was widespread in these prairie lakes, with evidence for secondary P limitation in certain lakes. In the experiments, iron did not stimulate primary production. Our results suggest that given the diverse geochemical nature of these lakes, classification models that separate saline lakes into subsets may be an effective method for improving predictions of algal production.


2014 ◽  
Vol 11 (13) ◽  
pp. 3661-3683 ◽  
Author(s):  
C. Buendía ◽  
S. Arens ◽  
T. Hickler ◽  
S. I. Higgins ◽  
P. Porada ◽  
...  

Abstract. In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological timescales under different environmental settings.


2021 ◽  
Author(s):  
Eva Nowak

The purpose of this study was to characterize microbial floc structure and properties under phosphorus (P) limiting and non-limiting regimes. The P-limitation applied to the biomass did not significantly impact on reactor performance in terms of COD removal and MLSS. The composition of EPS was affected by the P-limitation with significantly increased accumulation of carbohydrates, uronic acids and proteins. CLSM and glycoconjugate mapping revealed that the relative abundance of α and β- N -acetylgalactosaminyl/galactopyranosyl and N -acetylglucosaminyl residues was affected by P-limitation, suggesting changes in microbial populations within the floc structure, which in turn could cause the compositional changes of EPS. The image analysis performed on CLSM images indicated that under non-limiting conditions the cell clumps within the floc were significantly smaller as compared to P-limiting conditions. The fractal dimension and porosity under limiting conditions were either significantly higher or lower than under P-rich conditions.


1993 ◽  
Vol 50 (10) ◽  
pp. 2208-2221 ◽  
Author(s):  
Hunter J. Carrick ◽  
Claire L. Schelske ◽  
Frederick J. Aldridge ◽  
Michael F. Coveney

Excessive nutrient loads to aquatic systems can complicate otherwise predictable relationships between nutrient concentrations and phytoplankton biomass. We conducted six bioassays on surface phytoplankton assemblages collected from productive Lake Apopka, Florida, to measure the effect of nutrient reduction on phytoplankton growth and nutritional state. Lake water was mixed with one of three diluents to create a gradient of ambient nutrient concentrations; nitrogen (N) and phosphorus (P) limitation at each level of dilution was evaluated in a 2 × 2 factorial design. While the addition of N clearly increased the growth of phytoplankton in undiluted Lake Apopka water, the phytoplankton became more P limited with the reduction of particles (30–60% dilution). Regression of algal yields onto total P concentrations from our bottle experiments indicated that an 8 μg∙L−1 change in P leads to only a 1 μg∙L−1 change in chlorophyll yield, probably due to the high concentration of P in the lake. Because dilution influences factors in addition to ambient nutrient concentrations, results obtained with the technique must be carefully evaluated. Despite this, reduction of particles to improve water quality may, in concept, be a reasonable management scheme in lakes where a large fraction of the nutrients is particulate.


2021 ◽  
Author(s):  
Christopher Taylor ◽  
Victoria Janes-Bassett ◽  
Gareth Phoenix ◽  
Ben Keane ◽  
Iain Hartley ◽  
...  

<p>In ecosystems where nitrogen (N) limits plant productivity, N deposition can stimulate plant growth, and consequently, promote carbon (C) sequestration by increasing input of detrital C and other forms of plant C to the soil. However, other forms of nutrient limitation such as phosphorus (P) limitation and N-P co-limitation are widespread and may increase in prevalence with N deposition. Our understanding of how terrestrial ecosystem C, N and P cycling may be affected by N deposition when N is not the sole limiting resource is fairly limited. In this work, we investigate the consequences of enhanced N addition on C, N and P cycling in grasslands that exhibit contrasting forms of nutrient limitation.</p><p>We do so by collecting data from a long-term nutrient manipulation experiment on two N-P co-limited grasslands; an acidic grassland of stronger N-limitation and a calcareous grassland of stronger P limitation, and integrating this into a mechanistic C, N and P cycling model (N14CP). To simulate the experimental grasslands and explore the role of P access mechanisms in determining ecosystem state, we allowed P access to vary, and compared the outputs to plant-soil C, N and P data. Combinations of organic P access and inorganic P availability most closely representing data were used to simulate the grasslands and quantify their temporal response to nutrient manipulation.</p><p>The modelled grasslands showed contrasting responses to simulated N deposition. In the acidic grassland, N addition greatly increased C stocks by stimulating biomass productivity, but the same N treatments reduced the organic C pool in the calcareous grassland. Nitrogen deposition exacerbated P limitation in the calcareous grassland by reducing the size of the bioavailable P pool to plants, reducing biomass input to the soil C pool. Plant acquisition of organic P played an important role in determining the nutrient conditions of the grasslands, as both simulated grasslands increased organic P uptake to meet enhanced P demand driven by N deposition. Greater access to organic P in the acidic grassland prevented a shift to P limitation under elevated levels of N deposition, but organic P access was too low in the calcareous grassland to prevent worsening P limitation.</p><p>We conclude that grasslands of differing limiting nutrients may respond to N deposition in contrasting ways, and stress that as N deposition shifts ecosystems toward P limitation, a globally important carbon sink risks degradation.</p>


Sign in / Sign up

Export Citation Format

Share Document