Virus–Host Interaction for Defense and Transmission

Author(s):  
Gabriele Halwachs-Baumann
Keyword(s):  
2020 ◽  
Vol 21 (9) ◽  
pp. 3119 ◽  
Author(s):  
Jeroen Wagemans ◽  
Jessica Tsonos ◽  
Dominique Holtappels ◽  
Kiandro Fortuna ◽  
Jean-Pierre Hernalsteens ◽  
...  

The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%) of unknown function. Of these, 62 have been identified as virion-associated proteins by mass spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the 350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM) analysis. These very unusual filaments are ordered at three annular positions along the contractile sheath, as well as around the capsid, and may be involved in host interaction.


2014 ◽  
Vol 33 (5) ◽  
pp. 1349-1360 ◽  
Author(s):  
T. Swaroopa Rani ◽  
Daisuke Takahashi ◽  
Matsuo Uemura ◽  
Appa Rao Podile

Author(s):  
Janhavi Marwaha ◽  
Per Johan Jakobsen ◽  
Sten Karlsson ◽  
Bjørn Mejdell Larsen ◽  
Sebastian Wacker

AbstractThe freshwater pearl mussel (Margaritifera margaritifera) is a highly host-specific parasite, with an obligate parasitic stage on salmonid fish. Atlantic salmon (Salmo salar) and brown trout (Salmo trutta f. trutta and Salmo trutta f. fario) are the only hosts in their European distribution. Some M. margaritifera populations exclusively infest either Atlantic salmon or brown trout, while others infest both hosts with one salmonid species typically being the principal host and the other a less suitable host. Glochidial abundance, prevalence and growth are often used as parameters to measure host suitability, with the most suitable host species displaying the highest parameters. However, it is not known if the degree of host specialisation will negatively influence host fitness (virulence) among different host species. In this study we examined the hypothesis that glochidial infestation would result in differential virulence in two salmonid host species and that lower virulence would be observed on the most suitable host. Atlantic salmon and brown trout were infested with glochidia from two M. margaritifera populations that use Atlantic salmon as their principal host, and the difference in host mortality among infested and control (sham infested) fish was examined. Higher mortality was observed in infested brown trout (the less suitable host) groups, compared to the other test groups. Genetic assignment was used to identify offspring from individual mother mussels. We found that glochidia from individual mothers can infest both the salmonid hosts; however, some mothers displayed a bias towards either salmon or trout. We believe that the differences in host-dependent virulence and the host bias displayed by individual mothers were a result of genotype × genotype interactions between the glochidia and their hosts, indicating that there is an underlying genetic component for this parasite-host interaction.


2021 ◽  
Vol 9 (6) ◽  
pp. 1144
Author(s):  
Isabel Marcelino ◽  
Philippe Holzmuller ◽  
Ana Coelho ◽  
Gabriel Mazzucchelli ◽  
Bernard Fernandez ◽  
...  

The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium–host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.


Author(s):  
Raymond Berry

AbstractThe bed bug, Cimex lectularius L., is a common ectoparasite found to live among its vertebrate hosts. Antennal segments in bugs are critical for sensing multiple cues in the environment for survival. To determine whether the thermo receptors of bed bugs are located on their antennae; innovative bioassays were created to observe the choice between heated and unheated stimuli and to characterize the response of bugs to a heat source. Additionally, the effect of complete antenectomized segments on heat detection were evaluated. Heat, carbon dioxide, and moisture are cues that are found to activate bed bug behavior; a temperature at 38°C was used to assess the direction/degree at which the insect reacts to the change in distance from said stimulus. Using a lightweight spherical ball suspended by air through a vacuum tube, bed bugs and other insects are able to move in 360° while on a stationary point. Noldus EthoVision XT was used to capture video images and to track the bed bugs during 5-min bioassays. A bioassay was created using four Petri dish arenas to observe bed bug attraction to heat based on antennae segments at 40°C. The purpose of this study was to evaluate the effects of heat on complete antenectomized segments of the antennae. The results in this experiment suggest that bed bugs detect and are attracted to heat modulated by nutritional status. Learning the involvement of antennae segments in heat detection will help identify the location and role of thermoreceptors for bed bug host interaction.


Author(s):  
Feng Xiong ◽  
Ruoyu Wang ◽  
Joo-Hyung Lee ◽  
Shenglan Li ◽  
Shin-Fu Chen ◽  
...  

AbstractThe molecular basis underlying the interaction between retrotransposable elements (RTEs) and the human genome remains poorly understood. Here, we profiled N6-methyladenosine (m6A) deposition on nascent RNAs in human cells by developing a new method MINT-Seq, which revealed that many classes of RTE RNAs, particularly intronic LINE-1s (L1s), are strongly methylated. These m6A-marked intronic L1s (MILs) are evolutionarily young, sense-oriented to hosting genes, and are bound by a dozen RNA binding proteins (RBPs) that are putative novel readers of m6A-modified RNAs, including a nuclear matrix protein SAFB. Notably, m6A positively controls the expression of both autonomous L1s and co-transcribed L1 relics, promoting L1 retrotransposition. We showed that MILs preferentially reside in long genes with critical roles in DNA damage repair and sometimes in L1 suppression per se, where they act as transcriptional “roadblocks” to impede the hosting gene expression, revealing a novel host-weakening strategy by the L1s. In counteraction, the host uses the SAFB reader complex to bind m6A-L1s to reduce their levels, and to safeguard hosting gene transcription. Remarkably, our analysis identified thousands of MILs in multiple human fetal tissues, enlisting them as a novel category of cell-type-specific regulatory elements that often compromise transcription of long genes and confer their vulnerability in neurodevelopmental disorders. We propose that this m6A-orchestrated L1–host interaction plays widespread roles in gene regulation, genome integrity, human development and diseases.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 645
Author(s):  
Mohamed Ibrahem Elhawy ◽  
Sylvaine Huc-Brandt ◽  
Linda Pätzold ◽  
Laila Gannoun-Zaki ◽  
Ahmed Mohamed Mostafa Abdrabou ◽  
...  

Staphylococcus aureus continues to be a public health threat, especially in hospital settings. Studies aimed at deciphering the molecular and cellular mechanisms that underlie pathogenesis, host adaptation, and virulence are required to develop effective treatment strategies. Numerous host-pathogen interactions were found to be dependent on phosphatases-mediated regulation. This study focused on the analysis of the role of the low-molecular weight phosphatase PtpB, in particular, during infection. Deletion of ptpB in S. aureus strain SA564 significantly reduced the capacity of the mutant to withstand intracellular killing by THP-1 macrophages. When injected into normoglycemic C57BL/6 mice, the SA564 ΔptpB mutant displayed markedly reduced bacterial loads in liver and kidney tissues in a murine S. aureus abscess model when compared to the wild type. We also observed that PtpB phosphatase-activity was sensitive to oxidative stress. Our quantitative transcript analyses revealed that PtpB affects the transcription of various genes involved in oxidative stress adaptation and infectivity. Thus, this study disclosed first insights into the physiological role of PtpB during host interaction allowing us to link phosphatase-dependent regulation to oxidative bacterial stress adaptation during infection.


Author(s):  
Guohong Zeng ◽  
Jin Li ◽  
Yuxiu Ma ◽  
Qian Pu ◽  
Tian Xiao ◽  
...  

AbstractSaponins are kinds of antifungal compounds produced by Panax notoginseng to resist invasion by pathogens. Ilyonectria mors-panacis G3B was the dominant pathogen inducing root rot of P. notoginseng, and the abilities to detoxify saponins were the key to infect P. notoginseng successfully. To research the molecular mechanisms of detoxifying saponins in I. mors-panacis G3B, we used high-throughput RNA-Seq to identify 557 and 1519 differential expression genes (DEGs) in I. mors-panacis G3B with saponins treatments for 4H (Hours) and 12H (Hours) compared with no saponins treatments, respectively. Among these DEGs, we found 93 genes which were simultaneously highly expressed in I. mors-panacis G3B with saponins treatments for 4H and 12H, they mainly belong to genes encoding transporters, glycoside hydrolases, oxidation–reduction enzymes, transcription factors and so on. In addition, there were 21 putative PHI (Pathogen–Host Interaction) genes out of those 93 up-regulated genes. In this report, we analyzed virulence-associated genes in I. mors-panacis G3B which may be related to detoxifying saponins to infect P. notoginseng successfully. They provided an excellent starting point for in-depth study on pathogenicity of I. mors-panacis G3B and developed appropriate root rot disease management strategies in the future.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 254
Author(s):  
Zi-Hao Wang ◽  
Fei Ke ◽  
Qi-Ya Zhang ◽  
Jian-Fang Gui

Carassius auratus herpesvirus (CaHV) has been identified as a high-virulence pathogenic virus that infects aquatic animals, but the key factor for virus–host interaction is still unclear. Five Really interesting new genes (RING) finger proteins (39L, 52L, 131R, 136L, and 143R) of CaHV were screened to determine structural diversity. RING finger proteins were also predicted in other known fish herpesviruses, with an arrangement and number similar to CaHV. We performed multifaceted analyses of the proteins, including protein sizes, skeleton structures, subcellular localizations, and ubiquitination activities, to determine their precise roles in virus–host interactions. The five proteins were overexpressed and detected different levels of ubiquitination activities, and 143R showed the highest activity. Then, the prokaryotic expressed and purified full-length proteins (131R and 136L), RING domain isolates (131R12–43 and 136L45–87), and RING domain-deleted mutants (131RΔ12–43 and 136LΔ45–87) were prepared to detect their activities through ubiquitination assays. The results indicate that both full-length proteins and their isolates have activities that catalyze ubiquitination, and the full-length proteins possess higher activity than the isolates, but RING domain-deleted mutants lose their activities. Furthermore, the activities of the five proteins were verified as E3 ubiquitin ligase activity, showing that the RING domains determine the ubiquitination activity. These proteins present different subcellular localization. RING domain-deleted mutants showed similar subcellular localization with their full-length proteins, and all the isolates diffused in whole cells. The current results indicate that the sequence outside the RING domain determines subcellular localization and the level of ubiquitination activity, suggesting that the RING finger proteins of fish herpesviruses might have diverse functions in virus–host interaction.


Sign in / Sign up

Export Citation Format

Share Document