The Effect of Additional Shielding Gas on Properties and Erosion Resistance of High Chromium Hardfacing

Author(s):  
Marek Gucwa ◽  
Milos Mičian ◽  
Krzysztof Makles ◽  
Jerzy Winczek
Wear ◽  
1999 ◽  
Vol 225-229 ◽  
pp. 517-522 ◽  
Author(s):  
Marcio Gustavo Di Vernieri Cuppari ◽  
Frank Wischnowski ◽  
Deniol K Tanaka ◽  
Amilton Sinatora

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
M. A. Al-Bukhaiti ◽  
A. Abouel-Kasem ◽  
K. M. Emara ◽  
S. M. Ahmed

High chromium white irons (HCCIs) are used extensively throughout the mineral processing industry to handle erosive and corrosive slurries. This study is an investigation of the effect of impact angle and velocity on slurry erosion of HCCI. The tests were carried out using a rotating whirling-arm rig with particle concentration of 1 wt. %. Silica sand which has a nominal size range of 500–710 μm was used as an erodent. The results were obtained for angles of 30 deg, 45 deg, 60 deg, and 90 deg to the exposed surface and velocities of 5, 10, and 15 m/s. The highest erosion resistance of HCCI was at normal impact and the lowest at an angle of 30 deg, irrespective of velocity. The low erosion resistance at an oblique angle is due to large material removal by microcutting from ductile matrix and gross removal of carbides. The effect of velocity, over the studied range from 5 m/s to 15 m/s, on the increase in the erosion rate was minor. The change of impact velocity resulted in changing the slurry erosion mechanisms. At normal incidence, plastic indentation with extruded material of the ductile matrix was the dominant erosion mechanism at low impact velocity (5 m/s). With increasing impact velocity, the material was removed by the indentation of the ductile matrix and to smaller extent of carbide fracture. However, at high impact velocity (15 m/s), gross fracture and cracking of the carbides besides plastic indentation of the ductile matrix were the dominant erosion mechanisms.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 490
Author(s):  
Annalisa Fortini ◽  
Alessio Suman ◽  
Alessandro Vulpio ◽  
Mattia Merlin ◽  
Michele Pinelli

Surface material loss due to erosive wear is responsible for the increased cost of maintenance and downtime in industries. Hence, hardfacing is one of the most valuable and effective techniques employed to improve the wear resistance of heavy-duty components. The present paper investigates the microstructural and erosive wear characteristics of a hypereutectic high-chromium cast iron, considering the erosion resistance, resulting from the impact of micro-sized particles, of both as-received and heat-treated conditions. Micro-sized particles involve the erosion-resistant characteristics of carbide and matrix, contemporary. Due to this, the enhancement of the matrix strength could improve the mechanical support to withstand cracking deformation and spalling. Accordingly, the effect of a destabilization heat treatment on the microstructure was firstly investigated by hardness tests, X-ray diffraction analyses, optical and scanning electron microscopy. Specifically designed erosive tests were carried out using a raw meal powder at an impingement angle of 90°. The resulting superior wear resistance of the heat-treated samples was relayed on the improved matrix microstructure: consistent with the observed eroded surfaces, the reduced matrix/carbides hardness difference of the heat-treated material is pivotal in enhancing the erosion resistance of the hardfacing. The present results contribute to a better understanding of the microstructure–property relationships concerning the erosive wear resistance.


Wear ◽  
1995 ◽  
Vol 186-187 ◽  
pp. 159-167 ◽  
Author(s):  
S. Seetharamu ◽  
P. Sampathkumaran ◽  
R.K. Kumar

Author(s):  
Juliana Barbarioli ◽  
André Tschiptschin ◽  
Cherlio Scandian ◽  
Manuelle Curbani Romero

Author(s):  
Aliyev Z.H.

In recent years, sharp changes have occurred in the state of sloping lands of Azerbaijan. There was tension from the influence of the anthropogenic factors on the mountain slopes. The fact that the erosion process is rein-forced in the research site. Due to lack of agrotechnical measures on the slopes erosion process has been strength-ened, soil flooded with soil, physical and chemical properties of the soil have deteriorated, nutritional elements are reduced, vegetation is reduced and destruction limit. For some reason, the purpose of the research was Aqsu, two land cuts were set up to determine the degree of actual erosion in the Qizmeydan village. prevent erosion intensity, take preventive measures to take and implement appropriate measures.


Author(s):  
Y. Anggoro

The Belida field is an offshore field located in Block B of Indonesia’s South Natuna Sea. This field was discovered in 1989. Both oil and gas bearing reservoirs are present in the Belida field in the Miocene Arang, Udang and Intra Barat Formations. Within the middle Arang Formation, there are three gas pay zones informally referred to as Beta, Gamma and Delta. These sand zones are thin pay zones which need to be carefully planned and economically exploited. Due to the nature of the reservoir, sand production is a challenge and requires downhole sand control. A key challenge for sand control equipment in this application is erosion resistance without inhibiting productivity as high gas rates and associated high flow velocity is expected from the zones, which is known to have caused sand control failure. To help achieve a cost-effective and easily planned deployment solution to produce hydrocarbons, a rigless deployment is the preferred method to deploy downhole sand control. PSD analysis from the reservoir zone suggested from ‘Industry Rules of Thumb’ a conventional gravel pack deployment as a means of downhole sand control. However, based on review of newer globally proven sand control technologies since adoption of these ‘Industry Rules of Thumb’, a cost-effective solution could be considered and implemented utilizing Ceramic Sand Screen technology. This paper will discuss the successful application at Block B, Natuna Sea using Ceramic Sand Screens as a rigless intervention solution addressing the erosion / hot spotting challenges in these high rate production zones. The erosion resistance of the Ceramic Sand Screen design allows a deployment methodology directly adjacent to the perforated interval to resist against premature loss of sand control. The robust ceramic screen design gave the flexibility required to develop a cost-effective lower completion deployment methodology both from a challenging make up in the well due to a restrictive lubricator length to the tractor conveyancing in the well to land out at the desired set depth covering the producing zone. The paper will overview the success of multi-service and product supply co-operation adopting technology enablers to challenge ‘Industry Rules of Thumb’ replaced by rigless reasoning as a standard well intervention downhole sand control solution where Medco E&P Natuna Ltd. (Medco E&P) faces sand control challenges in their high deviation, sidetracked well stock. The paper draws final attention to the hydrocarbon performance gain resulting due to the ability for choke free production to allow drawing down the well at higher rates than initially expected from this zone.


2016 ◽  
Vol 58 (6) ◽  
pp. 489-494 ◽  
Author(s):  
Panyasak Phakpeetinan ◽  
Amnuysak Chianpairot ◽  
Ekkarut Viyanit ◽  
Fritz Hartung ◽  
Gobboon Lothongkum

Sign in / Sign up

Export Citation Format

Share Document