Somatic Hybridization Between Pyrus × Prunus Species

Author(s):  
S. J. Ochatt ◽  
E. M. Patat-Ochatt
Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 560
Author(s):  
José A. Hernández ◽  
Pedro Díaz-Vivancos ◽  
José Ramón Acosta-Motos ◽  
Nuria Alburquerque ◽  
Domingo Martínez ◽  
...  

(1) Background: Prunus species have the ability to suspend (induce dormancy) and restart growth, in an intricate process in which environmental and physiological factors interact. (2) Methods: In this work, we studied the evolution of sugars, antioxidant metabolism, and abscisic acid (ABA) and gibberellins (GAs) levels during bud dormancy evolution in a high-chill peach variety, grown for two seasons in two different geographical areas with different annual media temperature, a cold (CA) and a temperate area (TA). (3) Results: In both areas, starch content reached a peak at ecodormancy, and then decreased at dormancy release (DR). Sorbitol and sucrose declined at DR, mainly in the CA. In contrast, glucose and fructose levels progressively rose until DR. A decline in ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase and catalase activities occurred in both seasons at DR. Moreover, the H2O2-sensitive SOD isoenzymes, Fe-SOD and Cu,Zn-SOD, and two novel peroxidase isoenzymes, were detected. Overall, these results suggest the occurrence of a controlled oxidative stress during DR. GA7 was the major bioactive GA in both areas, the evolution of its levels being different between seasons and areas. In contrast, ABA content decreased during the dormancy period in both areas, resulting in a reduction in the ABA/total GAs ratio, being more evident in the CA. (4) Conclusion: A possible interaction sugars-hormones-ROS could take place in high-chill peach buds, favoring the DR process, suggesting that, in addition to sugar metabolism, redox interactions can govern bud DR, regardless of chilling requirements.


2021 ◽  
Vol 7 (3) ◽  
pp. 171
Author(s):  
Reannon L. Smith ◽  
Tom W. May ◽  
Jatinder Kaur ◽  
Tim I. Sawbridge ◽  
Ross C. Mann ◽  
...  

The Podosphaera tridactyla species complex is highly variable morphologically and causes powdery mildew on a wide range of Prunus species, including stone fruit. A taxonomic revision of the Po. tridactyla species complex in 2020 identified 12 species, seven of which were newly characterised. In order to clarify which species of this complex are present in Australia, next generation sequencing was used to isolate the fungal ITS+28S and host matK chloroplast gene regions from 56 powdery mildew specimens of stone fruit and ornamental Prunus species accessioned as Po. tridactyla or Oidium sp. in Australian reference collections. The specimens were collected in Australia, Switzerland, Italy and Korea and were collected from 1953 to 2018. Host species were confirmed using matK phylogenetic analysis, which identified that four had been misidentified as Prunus but were actually Malusprunifolia. Podosphaera species were identified using ITS+28S phylogenetic analysis, recognising three Podosphaera species on stone fruit and related ornamental Prunus hosts in Australia. These were Po.pannosa, the rose powdery mildew, and two species in the Po. tridactyla species complex: Po. ampla, which was the predominant species, and a previously unidentified species from peach, which we describe here as Po. cunningtonii.


2017 ◽  
pp. 295-298
Author(s):  
M. Rubio ◽  
P.M. Olivares ◽  
M.A. Batnini ◽  
F. Dicenta ◽  
P. Martínez-Gómez

Viruses ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 136 ◽  
Author(s):  
Wycliff Kinoti ◽  
Fiona Constable ◽  
Narelle Nancarrow ◽  
Kim Plummer ◽  
Brendan Rodoni

2021 ◽  
Author(s):  
Zhengting Yang ◽  
Xiaoyan Chen ◽  
Yufeng Huang ◽  
Jiawang Song ◽  
Tianlong Shi ◽  
...  

Plant Disease ◽  
2020 ◽  
Author(s):  
Rachid Tahzima ◽  
Radouane Qessaoui ◽  
Yoika Foucart ◽  
Sebastian Massart ◽  
Kris De Jonghe

Plum (Prunus domestica L., Rosaceae) trees, like many stone fruit trees, are known to be infected by numerous plant viruses, predominantly as consequence of their clonal mode of propagation and perennial cultivation (Jelkmann and Eastwell, 2011). Apricot vein clearing-associated virus (AVCaV) is a member of the genus Prunevirus in the family Betaflexiviridae. AVCaV was first reported in Italy infecting apricot (P. armeniaca L.) associated with foliar vein clearing symptoms (Elbeaino et al. 2014). It has also been detected in various Prunus species, like plum, Japanese plum (P. salicina L.), sour cherry (P. cerasus L.), and Japanese apricot (P. mume L.), apricot and peach (P. persica L.) sourced from Asian and European countries (Marais et al. 2015), as well as in the ornamental Myrobolan plum (P. cerasifera L.) in Australia (Kinoti et al. 2017). In 2018, during the vegetative season, a survey was carried out in two different apricot and plum orchards in the southern region of Agdez (Agadir, Morocco) where stone fruit trees are grown. Five branches with leaves were sampled from three apricot and three plum trees of unknown cultivars, all asymptomatic. Total RNA was extracted from 100 mg plant tissue (leaves and cambial scrapping) using RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) and separate samples (one per species) were used for library preparation (NEBNext Ultra RNA library kit; New England BioLabs, MA, USA), and sequencing (Illumina NextSeq v2, totRNA sequencing) at Admera Health (New Jersey, USA). All generated reads (6,756,881) from the plum sample were quality filtered and submitted to the VirusDetect pipeline (Zheng et al., 2017). The plum cDNA library, a total of 20 viral contigs (68-1928 bp) mapped to several AVCaV accessions in GenBank. A reference mapping (CLC Genomics Workbench 12, Qiagen, Denmark) was conducted against all four available AVCaV full genomes (KM507062-63, KY132099 and HG008921), revealing 100% coverage of the full sequence (8358 nt) with 97-98 % nucleotide (nt) identities (BLASTn). Analysis of the derived sequences allowed to identify the location of the four predicted ORFs i.e. (ORF1: 6066 nt/2,021 aa), (ORF2: 1383 nt/460 aa), (ORF3: 666 nt/221 aa) and (ORF4: 420 nt/139 aa), previously described for the AVCaV genome (Elbeaino et al. 2014). The amino acid sequences of the encoded proteins of AVCaV isolate from Morocco also shared 97-98% identities with the corresponding sequences of complete genome AVCaV isolates in GenBank. To confirm the detection of AVCaV in the three plum samples, specific RT-PCR primers (VC37657s: 5’-CCATAGCCACCCTTTTTCAA-3’ / VC28239a: 5’-GTCGTCAAGGGTCCAGTGAT-3’) (Elbeaino et al. 2014) were used and the expected 330 bp fragment from the replicase gene was amplified in all three samples and subsequently sequenced (MT980794-96). Sanger sequences were 100% identical to corresponding HTS derived sequence. This is the first report of AVCaV infecting plum in Africa. The incidence of AVCaV in Moroccan Prunus species is unknown. Plum trees from the surveyed orchards were also confirmed to be co-infected with little cherry virus 1 (LChV-1) using HTS. Further investigation is required to determine the impact of AVCaV on these asymptomatic plum trees and other stone fruits species.


1986 ◽  
Vol 35 (1) ◽  
pp. 108-113 ◽  
Author(s):  
A. C. NEWTON ◽  
R. JOHNSON ◽  
C. E. CATEN

Sign in / Sign up

Export Citation Format

Share Document