Rotational Components of Seismic Waves and Its Influence to the Seismic Response of Specially-Shaped Column Structure

Author(s):  
Xiangshang Chen ◽  
Dongqiang Xu ◽  
Junhua Zhang
2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Piotr Adam Bońkowski ◽  
Juliusz Kuś ◽  
Zbigniew Zembaty

AbstractRecent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Chen Xia ◽  
Chengzhi Qi ◽  
Xiaozhao Li

Transmitting boundaries are important for modeling the wave propagation in the finite element analysis of dynamic foundation problems. In this study, viscoelastic boundaries for multiple seismic waves or excitations sources were derived for two-dimensional and three-dimensional conditions in the time domain, which were proved to be solid by finite element models. Then, the method for equivalent forces’ input of seismic waves was also described when the proposed artificial boundaries were applied. Comparisons between numerical calculations and analytical results validate this seismic excitation input method. The seismic response of subway station under different seismic loads input methods indicates that asymmetric input seismic loads would cause different deformations from the symmetric input seismic loads, and whether it would increase or decrease the seismic response depends on the parameters of the specific structure and surrounding soil.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zude Ding ◽  
Mingrong Liao ◽  
Nanrun Xiao ◽  
Xiaoqin Li

The mechanical properties of high-toughness engineering cementitious composites (ECC) were tested, and a damage constitutive model of the materials was constructed. A new aseismic composite structure was then built on the basis of this model by combining aseismic joints, damping layers, traditional reinforced concrete linings, and ECC linings. A series of 3D dynamic-response numerical models considering the composite structure-surrounding rock-fault interaction were established to explore the seismic response characteristics and aseismic performance of the composite structures. The adaptability of the structures to the seismic intensity and direction was also discussed. Results showed that the ECC material displays excellent tensile and compressive toughness, with respective peak tensile and compressive strains of approximately 300- and 3-fold greater than those of ordinary concrete at the same strength grade. The seismic response law of the new composite lining structure was similar to that of the conventional composite structure. The lining in the fault zone and adjacent area showed obvious acceleration amplification responses, and the stress and displacement responses were fairly large. The lining in the fault zone was the weak part of the composite structures. Compared with the conventional aseismic composite structure, the new composite lining structure effectively reduced the acceleration amplification and displacement responses in the fault area. The damage degree of the new composite structure was notably reduced and the damage area was smaller compared with those of the conventional composite structure; these findings demonstrate that the former shows better aseismic effects than the latter. The intensity and direction of seismic waves influenced the damage of the composite structures to some extent, and the applicability of the new composite structure to lateral seismic waves is significantly better than that to axial waves. More importantly, under the action of different seismic intensities and directions, the damage degree and distribution area of the new composite structure were significantly smaller than those of the conventional composite lining structure.


2021 ◽  
pp. 875529302110513
Author(s):  
Eleftheria Efthymiou ◽  
Alfredo Camara

The definition of the spatial variability of the ground motion (SVGM) is a complex and multi-parametric problem. Its effect on the seismic response of cable-stayed bridges is important, yet not entirely understood to date. This work examines the effect of the SVGM on the seismic response of cable-stayed bridges by means of the time delay of the ground motion at different supports, the loss of coherency of the seismic waves, and the incidence angle of the seismic waves. The focus herein is the effect of the SVGM on cable-stayed bridges with various configurations in terms of their length and of design parameters such as the pylon shape and the pylon–cable system configuration. The aim of this article is to provide general conclusions that are applicable to a wide range of canonical cable-stayed bridges and to contribute to the ongoing effort to interpret and predict the effect of the SVGM in long structures. This work shows that the effect of the SVGM on the seismic response of cable-stayed bridges varies depending on the pylon shape, height, and section dimensions; on the cable-system configuration; and on the response quantity of interest. Furthermore, the earthquake incidence angle defines whether the SVGM is important to the seismic response of the cable-stayed bridges. It is also confirmed that the SVGM excites vibration modes of the bridges that do not contribute to their seismic response when identical support motion is considered.


2011 ◽  
Vol 94-96 ◽  
pp. 1941-1945
Author(s):  
Yi Wu ◽  
Chun Yang ◽  
Jian Cai ◽  
Jian Ming Pan

Elasto-plastic analysis of seismic responses of valve hall structures were carried out by using finite element software, and the effect of seismic waves on the seismic responses of the valve hall structures and suspension equipments were studied. Results show that significant torsional responses of the structure can be found under longitudinal and 3D earthquake actions. Under 3D earthquake actions, the seismic responses of the suspension valves are much more significant than those under 1D earthquake actions, the maximum tensile force of the suspenders is about twice of that under 1D action. The seismic responses of the suspension valves under vertical earthquake actions are much stronger than those under horizontal earthquake actions, when suffering strong earthquake actions; the maximum vertical acceleration of the suspension valves is about 4 times of that under horizontal earthquake actions. It is recommended that the effects of 3D earthquake actions on the structure should be considered in seismic response analysis of the valve hall structure.


Author(s):  
Francesca Mancini ◽  
Sebastiano D’Amico ◽  
Giovanna Vessia

ABSTRACT Local seismic response (LSR) studies are considerably conditioned by the seismic input features due to the nonlinear soil behavior under dynamic loading and the subsurface site conditions (e.g., mechanical properties of soils and rocks and geological setting). The selection of the most suitable seismic input is a key point in LSR. Unfortunately, few recordings data are available at seismic stations in near-field areas. Then, synthetic accelerograms can be helpful in LSR analysis in urbanized near-field territories. Synthetic accelerograms are generated by simulation procedures that consider adequately supported hypotheses about the source mechanism at the seismotectonic region and the wave propagation path toward the surface. Hereafter, mainshocks recorded accelerograms at near-field seismic stations during the 2016–2017 Central Italy seismic sequence have been compared with synthetic accelerograms calculated by an extended finite-fault ground-motion simulation algorithm code. The outcomes show that synthetic seismograms can reproduce the high-frequency content of seismic waves at near-field areas. Then, in urbanized near-field areas, synthetic accelerograms can be fruitfully used in microzonation studies.


2001 ◽  
Vol 01 (01) ◽  
pp. R41-R50 ◽  
Author(s):  
DUNCAN P. McLEOD ◽  
B. TOM KING ◽  
GEOFFREY E. STEDMAN ◽  
K. ULRICH SCHREIBER ◽  
TERRY H. WEBB

The second-order autoregressive AR(2) model is used to analyze rotational data for seismic events captured by a large ring laser gyroscope. Both the Sagnac frequency and linewidth estimates obtained from this model sense the rotational components of seismic waves. An event of magnitude M L = 6.5 at a distance of D = 5.4° from a large ring laser gyroscope operating at its quantum limit is used to compare the AR(2) model with the previous analytical phase angle method of analysis. The frequency, linewidth and analytic phase angle data each satisfactorily estimate the rotation magnitude. The direct detection of rotational motion in the P wave coda is observed, demonstrating the conversion to transverse S wave polarizations by the local geology.


2020 ◽  
Author(s):  
Chun-Te Chen ◽  
Shiann-Jong Lee ◽  
Yu-Chang Chan

<p>The topography effect has been thriving investigated based on numerical modeling. It impacts the seismic ground shaking, usually amplifying the amplitude of shaking at top hills or ridges and de-amplifying at valleys. However, the correlation between the earthquake-induced landslide and the topographic amplification is relatively unexplored. To investigate the amplification of seismic response on the surface topography and the role in the Chi-Chi earthquake-induced landslide in the JiuJiu peaks area, we perform a 3D ground motion simulation in the JiuJiu peaks area of Taiwan based on the spectral element method. The Lidar-derived 20m resolution Digital Elevation Model (DEM) data was applied to build a mesh model with realistic terrain relief. To this end, in a steep topography area like the JiuJiu peaks, the designed thin buffer layers are applied to dampen the mesh distortion. The three doubling mesh layers near the surface accommodate a more excellent mesh model. Our results show the higher amplification of PGA on the tops and ridges of JiuJiu peaks than surrounding mountains, while the de-amplification mostly occurs near the valley and hillside. The relief topography could have a ±50% variation in PGA amplification for compression wave, and have much more variety in PGA amplification for shear wave, which could be in the range between -50% and +100%. We also demonstrate that the high percentages of the landslide distribution right after the large earthquake are located in the topographic amplified zone. The source frequency content interacts with the topographic feature, in general, small-scale topography amplifies the higher-frequency seismic waves. It is worthy of further investigating the interaction between the realistic topography and the velocity structure on how to impact the seismic response in the different frequency bands. We suggest that the topographic seismic amplification should be taking into account in seismic hazard assessment and landslide evaluation.</p>


2020 ◽  
Author(s):  
Gizem Izgi ◽  
Stefanie Donner ◽  
Felix Bernauer ◽  
Daniel Vollmer ◽  
Klaus Stammler ◽  
...  

<p>Rotational motions play a key role in measuring seismic wavefield properties. To fully understand and describe the behavior of seismic waves, both translational and rotational components should be properly investigated. Portable blueSeis-3A (iXblue) sensors allow to measure 3 components of rotational motions with high sensitivity in a frequency range from 0.001 Hz to 50 Hz.</p><p align="justify">A huddle test was performed in Fürstenfeldbruck, Germany by the University of Potsdam in collaboration with the Ludwig-Maximilians University of Munich (LMU) and Federal Institute for Geosciences and Natural Resources (BGR) between 26 of August and 02 of September 2019, in order to further investigate the performance of multiple rotational instruments in combination with seismometers. Within the scope of this test, 5 rotational and 3 translational sensors were deployed on the basement of the observatory on decoupled plinth. Our preliminary results show good correlation between all components and rotational sensors. To investigate the coherent noise between sensors, we applied a 50 Hz low-pass filter and 100 Hz sampling rate. To better illustrate, probabilistic power spectral densities and spectrograms have been created. In general, we will discuss the reliability of the data recorded by rotational sensors for further investigations.</p><p> </p>


2021 ◽  
Vol 21 (1) ◽  
pp. 231-238
Author(s):  
Seokgyeong Hong ◽  
Jaehun Ahn

The importance of establishing a disaster prevention plan considering seismic performance is being highlighted to reduce damage to structures caused by earthquakes. Earthquake waves propagate from the bedrock to the ground surface through the soil. During the transmission process, they are amplified in a specific frequency range, and the degree of amplification depends mainly on the characteristics of the ground. Therefore, a seismic response analysis process is essential for enhancing the reliability of the seismic design. We propose a model for predicting seismic waves on the surface from seismic waves measured on the bedrock based on Multilayer Perceptron (MLP) and Convolutional Neural Networks (CNN) and validate the applicability of the proposed model with Spectral Acceleration (SA). Both the proposed models based on MLP and CNN successfully predicted the seismic response of the surface. The CNN-based model performed better than the MLP-based model, with a 10% smaller average error. We plan to implement the physical properties of the ground, such as shear wave velocity, to create a more versatile model in the future.


Sign in / Sign up

Export Citation Format

Share Document