On the Impact of Grown-in Silicon Oxide Precipitate Nuclei on Silicon Gate Oxide Integrity

Author(s):  
J. Vanhellemont ◽  
G. Kissinger ◽  
K. Kenis ◽  
M. Depas ◽  
D. Gräf ◽  
...  
2017 ◽  
Vol 30 (2) ◽  
pp. 161-178
Author(s):  
Tatjana Pesic-Brdjanin

Electric characteristics of devices in advanced CMOS technologies change over the time because of the impact of the ionizing radiation effects. Device aging is caused by cumulative contribution of generation of defects in the gate oxide and/or at the interface silicon-oxide. The concentration of these defects is time and bias-dependent values. Existing models include these effects through constant shift of voltage threshold. A method for including ionizing radiation effects in Spice models of MOS transistor and FinFET, based on an auxiliary diode circuit using for derivation of values of surface potential, that also calculates the correction time-dependent voltage due to concentration of trapped charges, is shown in this paper.


2012 ◽  
Vol 187 ◽  
pp. 71-74 ◽  
Author(s):  
Shun Wu Lin ◽  
Vincent S. Chang ◽  
Matt Yeh ◽  
Eric Houyang

The static electricity of wet clean was characterized by contactless surface voltage measurement on silicon oxide dielectric in this study. The paper shows surface static charge at wafer center caused by a single wafer spin cleaning tool. Deionized water (DIW) rinse was verified as the critical step of inducing static charge. It was demonstrated by metal oxide semiconductor (MOS) capacitor that such serious dielectric static charge would degrade gate oxide integrity (GOI). With dissolved CO2to lower DIW resistance, surface static charge at wafer center is reduced and degraded GOI is restored as a result.


2002 ◽  
Vol 46 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Chew-Hoe Ang ◽  
Lian-Hoon Ko ◽  
Wenhe Lin ◽  
Jia-Zhen Zheng

2009 ◽  
Vol 145-146 ◽  
pp. 131-134 ◽  
Author(s):  
Ingrid Rink ◽  
Faisal Wali ◽  
D. Martin Knotter

The impact of metal-ion contamination (present on wafer surface before oxidation) on gate oxide integrity (GOI) is well known in literature, which is not the case for clean silica particles [1, 2]. However, it is known that particles present in ultra-pure water (UPW) decrease the random yield in semiconductor manufacturing [3]. The presence of silica in UPW is common knowledge. UPW has also a certain content of metal ions, which can be attached to silica. That means, when a wafer is in contact with UPW metal ion can directly and/or in form of a silica-metal conglomerate be attached to the wafer surface. That means, it is not known in which form metal-ion contamination will deteriorate GOI the most. In order to receive more clarity in this field a short-loop study was set up, where we want distinguish between the impacts of - low metal ion contamination (Calcium), - clean silica particles (330nm) contamination, - silica particles with metal-ion core (330nm) contamination, and - metal-ion contamination at similar concentration as the metal-ion core of the particles on GOI (uniform and none uniform distribution).


Author(s):  
Hua Younan ◽  
Chu Susan ◽  
Gui Dong ◽  
Mo Zhiqiang ◽  
Xing Zhenxiang ◽  
...  

Abstract As device feature size continues to shrink, the reducing gate oxide thickness puts more stringent requirements on gate dielectric quality in terms of defect density and contamination concentration. As a result, analyzing gate oxide integrity and dielectric breakdown failures during wafer fabrication becomes more difficult. Using a traditional FA flow and methods some defects were observed after electrical fault isolation using emission microscopic tools such as EMMI and TIVA. Even with some success with conventional FA the root cause was unclear. In this paper, we will propose an analysis flow for GOI failures to improve FA’s success rate. In this new proposed flow both a chemical method, Wright Etch, and SIMS analysis techniques are employed to identify root cause of the GOI failures after EFA fault isolation. In general, the shape of the defect might provide information as to the root cause of the GOI failure, whether related to PID or contamination. However, Wright Etch results are inadequate to answer the questions of whether the failure is caused by contamination or not. If there is a contaminate another technique is required to determine what the contaminant is and where it comes from. If the failure is confirmed to be due to contamination, SIMS is used to further determine the contamination source at the ppm-ppb level. In this paper, a real case of GOI failure will be discussed and presented. Using the new failure analysis flow, the root cause was identified to be iron contamination introduced from a worn out part made of stainless steel.


2001 ◽  
Vol 664 ◽  
Author(s):  
C. Y. Wang ◽  
E. H. Lim ◽  
H. Liu ◽  
J. L. Sudijono ◽  
T. C. Ang ◽  
...  

ABSTRACTIn this paper the impact of the ESL (Etch Stop layer) nitride on the device performance especially the threshold voltage (Vt) has been studied. From SIMS analysis, it is found that different nitride gives different H concentration, [H] in the Gate oxide area, the higher [H] in the nitride film, the higher H in the Gate Oxide area and the lower the threshold voltage. It is also found that using TiSi instead of CoSi can help to stop the H from diffusing into Gate Oxide/channel area, resulting in a smaller threshold voltage drift for the device employed TiSi. Study to control the [H] in the nitride film is also carried out. In this paper, RBS, HFS and FTIR are used to analyze the composition changes of the SiN films prepared using Plasma enhanced Chemical Vapor deposition (PECVD), Rapid Thermal Chemical Vapor Deposition (RTCVD) with different process parameters. Gas flow ratio, RF power and temperature are found to be the key factors that affect the composition and the H concentration in the film. It is found that the nearer the SiN composition to stoichiometric Si3N4, the lower the [H] in SiN film because there is no excess silicon or nitrogen to be bonded with H. However the lowest [H] in the SiN film is limited by temperature. The higher the process temperature the lower the [H] can be obtained in the SiN film and the nearer the composition to stoichiometric Si3N4.


1999 ◽  
Vol 568 ◽  
Author(s):  
Lahir Shaik Adam ◽  
Mark E. Law ◽  
Omer Dokumaci ◽  
Yaser Haddara ◽  
Cheruvu Murthy ◽  
...  

ABSTRACTNitrogen implantation can be used to control gate oxide thicknesses [1,2]. This study aims at studying the fundamental behavior of nitrogen diffusion in silicon. Nitrogen at sub-amorphizing doses has been implanted as N2+ at 40 keV and 200 keV into Czochralski silicon wafers. Furnace anneals have been performed at a range of temperatures from 650°C through 1050°C. The resulting annealed profiles show anomalous diffusion behavior. For the 40 keV implants, nitrogen diffuses very rapidly and segregates at the silicon/ silicon-oxide interface. Modeling of this behavior is based on the theory that the diffusion is limited by the time to create a mobile nitrogen interstitial.


1998 ◽  
Vol 38 (2) ◽  
pp. 255-258 ◽  
Author(s):  
G Ghidini ◽  
C Clementi ◽  
D Drera ◽  
F Maugain

Sign in / Sign up

Export Citation Format

Share Document