Properties of NaOH-Treated Slovak Zeolitic Tuff and Its Sorption Ability Towards Some Cations

Author(s):  
M. Főldesová ◽  
P. Dillinger ◽  
P. Lukáč
Author(s):  
Samer R. Rabab’ah ◽  
Madhar M. Taamneh ◽  
Hussein M. Abdallah ◽  
Osama K. Nusier ◽  
Laith Ibdah

Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 175
Author(s):  
Sang-Eun Jo ◽  
Jung-Weon Choi ◽  
Sang-June Choi

Mag@silica-Ag composite has a high sorption ability for I− in aqueous solution due to its high surface area and strong affinity for the studied anion. The material adsorbed I− rapidly during the initial contact time (in 45 min, η = 80%) and reached adsorption equilibrium after 2 h. Moreover, mag@silica-Ag proved to selectively remove I− from a mixture of Cl−, NO3− and I−. The adsorption behavior fitted the Langmuir isotherm perfectly and the pseudo-second-order kinetic model. Based on the Langmuir isotherm, the maximum adsorption capacity of mag@silica-Ag was 0.82 mmol/g, which is significantly higher than previously developed adsorbents. This study introduces a practical application of a high-capacity adsorbent in removing radioactive I− from wastewaters.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1422
Author(s):  
Viktor V. Revin ◽  
Alexander V. Dolganov ◽  
Elena V. Liyaskina ◽  
Natalia B. Nazarova ◽  
Anastasia V. Balandina ◽  
...  

Currently, there is an increased demand for biodegradable materials in society due to growing environmental problems. Special attention is paid to bacterial cellulose, which, due to its unique properties, has great prospects for obtaining functional materials for a wide range of applications, including adsorbents. In this regard, the aim of this study was to obtain a biocomposite material with adsorption properties in relation to fluoride ions based on bacterial cellulose using a highly productive strain of Komagataeibacter sucrofermentans H-110 on molasses medium. Films of bacterial cellulose were obtained. Their structure and properties were investigated by FTIR spectroscopy, NMR, atomic force microscopy, scanning electron microscopy, and X-ray structural analysis. The results show that the fiber thickness of the bacterial cellulose formed by the K. sucrofermentans H-110 strain on molasses medium was 60–90 nm. The degree of crystallinity of bacterial cellulose formed on the medium was higher than on standard Hestrin and Schramm medium and amounted to 83.02%. A new biocomposite material was obtained based on bacterial cellulose chemically immobilized on its surface using atomic-layer deposition of nanosized aluminum oxide films. The composite material has high sorption ability to remove fluoride ions from an aqueous medium. The maximum adsorption capacity of the composite is 80.1 mg/g (F/composite). The obtained composite material has the highest adsorption capacity of fluoride from water in comparison with other sorbents. The results prove the potential of bacterial cellulose-based biocomposites as highly effective sorbents for fluoride.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2188
Author(s):  
Joanna Goscianska ◽  
Aleksander Ejsmont ◽  
Anita Kubiak ◽  
Dominika Ludowicz ◽  
Anna Stasiłowicz ◽  
...  

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, and chemical and thermal stability, mesoporous carbons can be considered modern carriers for active pharmaceutical ingredients whose effectiveness needs frequent dosing algorithms. Here, the novel benzocaine delivery systems based on ordered mesoporous carbons of the cubic structure were obtained with the use of a hard template method and functionalization with amine groups at 40 °C for 8 h. It has been shown that amine grafting strongly modifies the surface chemistry and textural parameters of carbons. All samples indicated good sorption ability towards benzocaine, with evident improvement following the functionalization with the amine groups. The sorption capacity and drug release kinetics were strongly affected by the porosity of carbon carriers and the surface functional groups. The smallest amount of benzocaine (~12%) was released from pristine mesoporous carbon, which could be correlated with strong API–carrier interactions. Faster and more efficient release of the drug was observed in the case of triethylenetetramine modified carbon (~62%). All benzocaine delivery platforms based on amine-grafted mesoporous carbons revealed high permeability through the artificial membrane.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Huan V. Doan ◽  
Ka Ming Leung ◽  
Valeska P. Ting ◽  
Asel Sartbaeva

The differences in valence and size between extra-framework cations exert a significant effect on the nitrogen sorption ability in the synthesised chabazite zeolites (K-CHA, Cs-CHA, Ca-CHA, Ba-CHA, Sr-CHA and Zn-CHA).


2004 ◽  
Vol 69 (4) ◽  
pp. 273-282 ◽  
Author(s):  
Ana Radosavljevic-Mihajlovic ◽  
Vera Dondur ◽  
Aleksandra Dakovic ◽  
Jovan Lemic ◽  
Magdalena Tomasevic-Canovic

Samples of natural HEU-type zeolites ? clinoptilolite-Ca, from the Novakovici deposit (near Prijedor, Bosnia and Herzegovina) were treated with the hydrochloric acid of various concentrations (from 10-3Mto 2M). Zeolitic tuffs before and after the acid treatment were examined using IR, XRPD, and chemical analyses. The changes in the crystal structure of acid treated samples showed a significant reduction in the crystallinity of zeolitic tuffs (60?70 %), which were effected by hydrochloric acid with concentrations of 1 M and above.


Clay Minerals ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 81-92 ◽  
Author(s):  
S. Tomić ◽  
N. Rajić ◽  
J. Hrenović ◽  
D. Povrenović

AbstractNatural zeolitic tuff from Brus (Serbia) consisting mostly of clinoptilolite (about 90%) has been investigated for the reduction of the Mg concentration in spring water. The sorption capacity of the zeolite is relatively low (about 2.5 mg Mg g-1for the initial concentration of 100 mg Mg dm-3). The zeolitic tuff removes Mg from water solutions by ion exchange, which has been demonstrated by energy dispersive X-ray analysis (EDS). The extent of ion exchange was influenced by the pH and the initial Mg concentration. Kinetic studies revealed that Lagergen's pseudo-second order model was followed. Intra-particle diffusion of Mg2+influenced the ion exchange, but it is not the rate-limiting step. Rather than having to dispose of the Mg-loaded (waste) zeolite, a possible application was tested. Addition to a wastewater with a low concentration of Mg showed that it could successfully make up for the lack of Mg micronutrient and, accordingly, enabled the growth of phosphate-accumulating bacteriaA. Junii, increasing the amount of phosphate removed from the wastewater.


2007 ◽  
Vol 311 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Aleksandra Daković ◽  
Srđan Matijašević ◽  
George E. Rottinghaus ◽  
Vera Dondur ◽  
Tanja Pietrass ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document