Application of Analog Electronic Circuits in Secure Communication: A Review

Author(s):  
Manish Kumar Thukral ◽  
Karma Sonam Sherpa ◽  
Kumkum Garg
2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Shouquan Pang ◽  
Yu Feng ◽  
Yongjian Liu

Finite-time synchronization of chaotic systems with different dimension and secure communication is investigated. It is rigorously proven that global finite-time synchronization can be achieved between three-dimension Lorenz chaotic system and four-dimension Lorenz hyperchaotic system which have certain parameters or uncertain parameters. The electronic circuits of finite-time synchronization using Multisim 12 are designed to verify our conclusion. And the application to the secure communications is also analyzed and discussed.


2013 ◽  
Vol 23 (02) ◽  
pp. 1350030 ◽  
Author(s):  
SHIU-PING WANG ◽  
SENG-KIN LAO ◽  
HSIEN-KENG CHEN ◽  
JUHN-HORNG CHEN ◽  
SHIH-YAO CHEN

In recent years, there has been expanding research on the applications of fractional calculus to the areas of signal processing, modeling and controls. Analog circuit implementation of chaotic systems is used in studying nonlinear dynamical phenomena, which is also applied in realizing the controller development. In this paper, chain fractance and tree fractance circuits are constructed to realize the fractional-order Chen–Lee system. The results are in good agreement with those obtained from numerical simulation. This study shows that not only is this system related to gyro motion but can also be applied to electronic circuits for secure communication.


Chaos is an ubiquitous phenomenon that arises in many natural and artificial systems where nonlinearity is present (Thompson & Stewart 1986; Moon 1992). Nowhere is this important and robust phenomenon more easily observed, studied and exploited than in electronic circuits. Three reasons for this can be identified. First, there exist exceedingly simple and inexpensive circuits costing less than a paperback, which are ideal for heuristic experimental investigations of the diverse chaotic phenomena that have been identified in the more complex systems of solid and fluid dynamics, chemical kinetics, etc. Second, the physics of the electronic devices used in these circuits is a well-understood and mature branch of electrical engineering. Excellent mathematical models exist, allowing the experimental observations to be reproduced by computer simulation (Parker & Chua 1989) with great accuracy; and the bifurcational structure of these nonlinear models can be analysed by using the new topological techniques of dynamical systems theory. It is indeed the case that no other chaotic physical systems are known which are amenable simultaneously to experimental, numerical and analytical studies, giving correlations which are not only qualitative but often quantitative to within 5%. Third, for applications which call for a source of real chaotic signals (such as secure communication systems and neural networks), electronic circuits provide the simplest and cheapest source of such physical signals. Moreover, such circuits can be readily mass-produced in practical applications as inexpensive integrated circuit chips


Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 284
Author(s):  
Cheng-Hsiung Yang ◽  
Che-Lun Chang ◽  
Shih-Yu Li

Chaotic behavior is complicated, sensitive, and has the feature of great variety, which are the most potential signals to be applied in data encryption, secure communication, medical information protection, etc. As a consequence, in this paper, we try to propose three different ways to show our data generating results step by step, which means it can be proved effectively and used in practice: (1) Chaotic solutions simulated by MATLAB, (2) chaotic motion drawn via electronic circuits software Multisim, and (3) chaotic signal implemented on real electronic circuits with breadboard. In advance, following the same design principal, the adaptive chaotic signal is also designed and presented in the end of this article for further study, which provides a more flexible and variable chaotic signal to enhance the encryption effectiveness. The experimental results are extremely close to the two simulation results and can definitely be technically transferred to real encryption application.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
Amolkirat Singh ◽  
Guneet Saini

Many people lose their life and/or are injured due to accidents or unexpected events taking place on road networks. Besides traffic jams, these accidents generate a tremendous waste of time and fuel. Undoubtedly, if the vehicles are provided with timely and dynamic information related to road traffic conditions, any unexpected events or accidents, the safety and efficiency of the transportation system with respect to time, distance, fuel consumption and environmentally destructive emissions can be improved. In the field of computer and information science, Vehicular Ad hoc Network (VANET) have recently emerged as an effective tool for improving road safety through propagation of warning messages among the vehicles in the network about potential obstacles on the road ahead. VANET is a research area which is in more demand among the researchers, the automobile industries and scientists to discover about the loopholes and advantages of the vehicular networks so that efficient routing algorithms can be developed which can provide reliable and secure communication among the mobile nodes.In this paper, we propose a Groundwork Based Ad hoc On Demand Distance Vector Routing Protocol (GAODV) focus on how the Road Side Units (RSU’s) utilized in the architecture plays an important role for making the communication reliable. In the interval of finding the suitable path from source to destination the packet loss may occur and the delay also is counted if the required packet does not reach the specified destination on time. So to overcome delay, packet loss and to increase throughput GAODV approach is followed. The performance parameters in the GAODV comes out to be much better than computed in the traditional approach.


Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


2020 ◽  
Vol 38 (3A) ◽  
pp. 446-456
Author(s):  
Bashar F. Midhat

Step down DC-DC converters are power electronic circuits, which mainly used to convert voltage from a level to a lower level. In this paper, a discontinuous controller is proposed as a control method in order to control Step-Down DC-DC converters. A Lyapunov stability criterion is used to mathematically prove the ability of the proposed controller to give the desired voltage. Simulationsl1 are performedl1 in MATLABl1 software. The simulationl1 resultsl1 are presentedl1 for changesl1 in referencel1 voltagel1 and inputl1 voltagel1 as well as stepl1 loadl1 variations. The resultsl1 showl1 the goodl1 performancel1 of the proposedl1 discontinuousl1 controller.


Sign in / Sign up

Export Citation Format

Share Document