Role of Plant-Microorganism Interactions in Plant Tolerance to Arsenic

Author(s):  
Anna Kowalczyk ◽  
Dariusz Latowski
Keyword(s):  
Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582097924
Author(s):  
Darya Babina ◽  
Marina Podobed ◽  
Ekaterina Bondarenko ◽  
Elizaveta Kazakova ◽  
Sofia Bitarishvili ◽  
...  

Plant growth response to γ-irradiation includes stimulating or inhibitory effects depending on plant species, dose applied, stage of ontogeny and other factors. Previous studies showed that responses to irradiation could depend on ABA accumulation and signaling. To elucidate the role of ABA in growth and photosynthetic responses to irradiation, lines Col-8, abi3-8 and aba3 -1 of Arabidopsis thaliana were used. Seeds were γ-irradiated using 60Co in the dose range 50-150 Gy. It was revealed that the dose of 150 Gy affected germination parameters of aba3 -1 and Col-8 lines, while abi3-8 line was the most resistant to the studied doses and even showed faster germination at early hours after γ-irradiation at 50 Gy. These results suggest that susceptibility to ABA is probably more important for growth response to γ-irradiation than ABA synthesis. The photosynthetic functioning of 16-day-old plants mainly was not disturbed by γ-irradiation of seeds, and no indication of photosystem II photoinhibition was noticed, revealing the robustness of the photosynthetic system of A. thaliana. Glutathione peroxidase activity and ABA concentrations in plant tissues were not affected in the studied dose range. These results contribute to the understanding of germination and photosynthesis fine-tuning and of mechanisms of plant tolerance to ionizing radiation.


2021 ◽  
Author(s):  
Shiva - Najafi Kakavand ◽  
Naser - Karimi ◽  
Hamid-Reza - Ghasempour ◽  
Ali - Raza ◽  
Mehrdad - Chaichi ◽  
...  

Abstract Salicylic acid (SA) and jasmonic acid (JA) as plant growth regulators (PGRs) have the potential to ameliorate plant development and tolerance to deleterious effects of toxic metals like nickel (Ni). Therefore, the current study was carried out to evaluate SA and JA's interactive effect on the root antioxidative response of two Alyssum inflatum Nyár. populations against Ni-toxicity. Two A. inflatum species under Ni-stress conditions (0, 100, 200, and 400 µM) were exposed to alone or combined levels of SA (0, 50, and 200 µM) and JA (0, 5, and 10 µM) treatments. Results showed that high Ni doses reduced the roots fresh weight (FW) in two populations than control; however, the use of external PGRs had ameliorated roots biomass by mitigated Ni-toxicity. Under Ni toxicity, SA and JA, especially their combination, induced high Ni accumulation in plants' roots. Moreover, the application of SA and JA alone, as well as combined SA + JA, was found to be effective in the scavenging of hydrogen peroxide (H2O2) by improving the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in both populations under Ni-toxicity. Overall, our results manifest that SA and JA's external use, especially combined SA + JA treatments, ameliorate root biomass and plant tolerance by restricting translocation Ni to the shoot, accumulating in roots, and also enhancing antioxidant defense systems.


2021 ◽  
pp. 41-64
Author(s):  
Priyanka Verma* ◽  
Dheer Singh ◽  
Ishwar Prasad Pathania ◽  
Komal Aggarwal

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 663 ◽  
Author(s):  
Jianhong Ren ◽  
Jun Ye ◽  
Lina Yin ◽  
Gouxia Li ◽  
Xiping Deng ◽  
...  

Melatonin has been confirmed extensively for the positive effects on increasing plant tolerance to various abiotic stresses. However, the roles of melatonin in mediating different stresses still need to be explored in different plants species and growth periods. To investigate the role of melatonin in mitigating salt stress, maize (Zea mays L.) seedlings growing in hydroponic solution were treated with 100 mM NaCl combined with or without 1 μM melatonin. Melatonin application had no effects on maize growth under normal condition, while it moderately alleviated the NaCl-induced inhibition of plant growth. The leaf area, biomass, and photosynthesis of melatonin-treated plants were higher than that of without melatonin under NaCl treatment. The osmotic potential was lower, and the osmolyte contents (including sucrose and fructose) were higher in melatonin-treated plants. Meanwhile, the decreases in Na+ content and increases in K+/Na+ ratio were found in shoots of melatonin-applied plant under salt stress. Moreover, both enzymatic and nonenzymatic antioxidant activities were significantly increased in leaves with melatonin application under salt treatment. These results clearly indicate that the exogenous melatonin-enhanced salt tolerance under short-term treatment could be ascribed to three aspects, including osmotic adjustment, ion balance, and alleviation of salt-induced oxidative stress.


2018 ◽  
Vol 156 (5) ◽  
pp. 680-688 ◽  
Author(s):  
R. Balestrini ◽  
W. Chitarra ◽  
C. Antoniou ◽  
M. Ruocco ◽  
V. Fotopoulos

AbstractDrought represents one of the major constraints on agricultural productivity and food security and in future is destined to spread widely as a consequence of climate change. Research efforts are focused on developing strategies to make crops more resilient and to mitigate the effects of stress on crop production. In this context, the use of root-associated microbial communities and chemical priming strategies able to improve plant tolerance to abiotic stresses, including drought, have attracted increasing attention in recent years. The current review offers an overview of recent research aimed at verifying the role of arbuscular mycorrhizal fungi and chemical agents to improve plant tolerance to drought and to highlight the mechanisms involved in this improvement. Attention will be devoted mainly to current knowledge on the mechanisms involved in water transport.


2019 ◽  
Vol 72 (4) ◽  
Author(s):  
Boubaker Idder ◽  
Rachid Djibaoui ◽  
Hocine Abdelhakim Reguieg Yssaad ◽  
Abdelhak Djoudi

Salt stress affects the development and growth of plants in various ways as a result of its effect on water relationships, photosynthesis, and nutrient absorption by physiological and biochemical processes. Consequently, several researchers have increasingly studied the effect of plant growth promoting bacteria (PGPR) as promoters and enhancers under saline environment. The main goals of this study were to examine the manifested response of the broad bean plant under saline conditions and to evaluate the role of some <em>Pseudomonas</em> isolates in improving plant tolerance to salt stress. Three <em>Pseudomonas</em> strains were isolated (P1 and P7 from a saline soil and P15 from a vineyard soil). These isolates were screened by salinity and used as inoculums in <em>Vicia faba</em> plants (OTONO variety) irrigated with two saline solutions (NaCl; 100 and 150 mM L<sup>−1</sup>) and one without salinity. The results show that salinity decreased the fresh weight, total chlorophyll content, and the Na<sup>+</sup>/K<sup>+</sup> ratio, but it increased proline accumulation in inoculated and noninoculated plants. The inoculation of <em>V. faba</em> plants with P1, P7, and P15 strains significantly increased the production of fresh biomass in the presence and absence of salt stress, and positively affected the accumulation of proline and the Na<sup>+</sup>/K<sup>+</sup> ratio. The inoculation with bacterial strains increased the total chlorophyll content in plants at all salt treatment levels, especially the P1 strain that showed a significant effect.


2019 ◽  
Vol 20 (15) ◽  
pp. 3745 ◽  
Author(s):  
Ting Jin ◽  
Yangyang Sun ◽  
Ranran Zhao ◽  
Zhong Shan ◽  
Junyi Gai ◽  
...  

Peroxidases play prominent roles in antioxidant responses and stress tolerance in plants; however, their functions in soybean tolerance to salt stress remain unclear. Here, we investigated the role of a peroxidase gene from the wild soybean (Glycine soja), GsPRX9, in soybean tolerance to salt stress. GsPRX9 gene expression was induced by salt treatment in the roots of both salt-tolerant and -sensitive soybean varieties, and its relative expression level in the roots of salt-tolerant soybean varieties showed a significantly higher increase than in salt-sensitive varieties after NaCl treatment, suggesting its possible role in soybean response to salt stress. GsPRX9-overexpressing yeast (strains of INVSc1 and G19) grew better than the control under salt and H2O2 stress, and GsPRX9-overexpressing soybean composite plants showed higher shoot fresh weight and leaf relative water content than control plants after NaCl treatment. Moreover, the GsPRX9-overexpressing soybean hairy roots had higher root fresh weight, primary root length, activities of peroxidase and superoxide dismutase, and glutathione level, but lower H2O2 content than those in control roots under salt stress. These findings suggest that the overexpression of the GsPRX9 gene enhanced the salt tolerance and antioxidant response in soybean. This study would provide new insights into the role of peroxidase in plant tolerance to salt stress.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5359
Author(s):  
Mohamed Moustafa-Farag ◽  
Amr Elkelish ◽  
Mohamed Dafea ◽  
Mumtaz Khan ◽  
Marino B. Arnao ◽  
...  

Melatonin (MT) is a pleiotropic molecule with diverse and numerous actions both in plants and animals. In plants, MT acts as an excellent promotor of tolerance against abiotic stress situations such as drought, cold, heat, salinity, and chemical pollutants. In all these situations, MT has a stimulating effect on plants, fomenting many changes in biochemical processes and stress-related gene expression. Melatonin plays vital roles as an antioxidant and can work as a free radical scavenger to protect plants from oxidative stress by stabilization cell redox status; however, MT can alleviate the toxic oxygen and nitrogen species. Beyond this, MT stimulates the antioxidant enzymes and augments antioxidants, as well as activates the ascorbate–glutathione (AsA–GSH) cycle to scavenge excess reactive oxygen species (ROS). In this review, we examine the recent data on the capacity of MT to alleviate the effects of common abiotic soil stressors, such as salinity, alkalinity, acidity, and the presence of heavy metals, reinforcing the general metabolism of plants and counteracting harmful agents. An exhaustive analysis of the latest advances in this regard is presented, and possible future applications of MT are discussed.


2016 ◽  
Vol 43 (11) ◽  
pp. 1048 ◽  
Author(s):  
Marwa Drira ◽  
Moez Hanin ◽  
Khaled Masmoudi ◽  
Faiçal Brini

Dehydrins (DHNs) are among the most common proteins accumulated in plants under water-related stress. They typically contain at least three conserved sequences designated as the Y-, S- and K-segments. The present work aims to highlight the role of the K-segments in plant tolerance to biotic and abiotic stresses. For this purpose, transgenic Arabidopsis thaliana (L.) Heyhn. lines expressing distinct wheat (Triticum aestivum L.) DHN-5 truncated constructs with or without the K-segments were generated. Our results showed that unlike the derivative lacking a K-segment, constructs containing only one or two K-segments enhanced the tolerance of A. thaliana to diverse stresses and were similar to the full-length wheat DHN-5. Moreover, compared with the wild-type and the YS form, the transgenic plants overexpressing wheat DHN-5 with K-segments maintained higher superoxide dismutase, catalase and peroxide dismutase enzymatic activity, and accumulated lower levels of H2O2 and malondialdehyde. In addition, we demonstrated that lines like A. thaliana overexpressing wheat DHN-5 showed increased resistance to fungal infections caused by Botrytis cinerea and Alternaria solani. Finally, the overexpression of the different forms of wheat DHN-5 led to the regulation of the expression of several genes involved in the jasmonic acid signalling pathway.


Sign in / Sign up

Export Citation Format

Share Document