Buccal and Intraoral Drug Delivery: Potential Alternative to Conventional Therapy

Author(s):  
Bazigha K. Abdul Rasool ◽  
Aliasgar Shahiwala
Author(s):  
A. Deevan Paul ◽  
P. Samatha ◽  
S. Manasa ◽  
R. Munemma ◽  
D. Supriya

Oral mucosal drug delivery system is widely applicable as novel site for administration of drug and controlled release action by preventing first pass metabolism and enzymatic degradation due to GI microbial flora. The oral cavity represents a challenging area to develop an effective drug delivery modelling. This arises due to the various inherent functions of the oral cavity (eating, swallowing, speaking, chewing), as well as the presence of the fluid that is involved in all these activities, saliva. This fluid is continually secreted into and then removed from the mouth. Oral Mucosa drug delivery system provides local and systemic action. The delivery of drugs through the buccal mucosa has attracted much research interest over the past two decades and numerous approaches, both conventional and complex, have been developed in an attempt to deliver a variety of pharmaceutical compounds via the buccal route. To outline the progress in the in vitro and in vivo modeling of Mucosal drug delivery and provide a critical review of currently used methods. The purpose of this review is to represent the modeling of oral cavity with Mucoadhesive drug delivery systems and clarify the potential alternative to conventional therapy.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32893 ◽  
Author(s):  
Alan C. L. Tang ◽  
Gan-Lin Hwang ◽  
Shih-Jung Tsai ◽  
Min-Yao Chang ◽  
Zack C. W. Tang ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 73-80
Author(s):  
Yogranjan Singh ◽  
Kaustubh Gurnani ◽  
G. K. Satpute

The application of nanotechnology in drug delivery is offering several exhilarating possibilities not only in healthcare but also in agriculture. Nanoparticles combined with the therapeutic agents have a proven edge over problems associated with conventional therapy; however, some issues like side effects and toxicity are still under debate and are of prime concern in utilization in biological systems. Herein, we discuss the role of nanotech drug delivery system mostly in animal and plants- highlighting the comparative accounts of the key techniques for designing of drug in animals and plants, the challenges therein, the important nanoparticles being used in both the area and prospects of the field in the near future.


Author(s):  
Payal Gupta ◽  
Purusottam Mishra ◽  
Ramasare Prasad ◽  
Krishna Mohan Poluri

: Microbial resistance to conventional therapeutics has become a significant threat to human society. Biofilms serve as the major virulence factor for the microorganisms by resisting the antibiotics and host innate immune system. Antimicrobial peptides (AMPs) have emerged as a potential alternative to conventional therapeutics due to their exceptional anti-biofilm and broad-spectrum antimicrobial property. Researchers have applied bioinformatics, genetic engineering, tissue culture, and drug delivery approaches to enhance the production and therapeutic efficacy of antimicrobial peptides. This review comprehensively describes the various aspects of AMPs with particular focus on their anti-biofilm potential. Other detailed information highlighted in this review includes different classes of AMPs, their mode of action, and anti-biofilm activity both alone and in synergy with other AMPs or conventional antibiotics. Further, challenges and opportunities of AMPs based drug delivery systems such as nano-formulations, polymeric micelles, and vesicles are also summarized.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1329 ◽  
Author(s):  
Febrina Sandra ◽  
Nisar Ul Khaliq ◽  
Anwar Sunna ◽  
Andrew Care

In recent years, it has become apparent that cancer nanomedicine’s reliance on synthetic nanoparticles as drug delivery systems has resulted in limited clinical outcomes. This is mostly due to a poor understanding of their “bio–nano” interactions. Protein-based nanoparticles (PNPs) are rapidly emerging as versatile vehicles for the delivery of therapeutic and diagnostic agents, offering a potential alternative to synthetic nanoparticles. PNPs are abundant in nature, genetically and chemically modifiable, monodisperse, biocompatible, and biodegradable. To harness their full clinical potential, it is important for PNPs to be accurately designed and engineered. In this review, we outline the recent advancements and applications of PNPs in cancer nanomedicine. We also discuss the future directions for PNP research and what challenges must be overcome to ensure their translation into the clinic.


2006 ◽  
Vol 98 (6) ◽  
pp. 547-554 ◽  
Author(s):  
Stephane Mouly ◽  
Isabelle Mahe ◽  
Belkacem Haouchine ◽  
Marie-Jose Sanson-le-Pors ◽  
Patrick Blain ◽  
...  

2021 ◽  
Vol 22 ◽  
Author(s):  
Md. Marufur Rahman Moni ◽  
Mst. Marium Begum ◽  
Md. Sahab Uddin ◽  
Ghulam Md Ashraf

: Parkinson’s disease (PD) is a progressive neurodegenerative disorder that exerts a huge burden on our society. The occurrence of this neurodegenerative disease has been aggregating day-by-day. This disease can be a serious concern if the patients are left untreated. However, conventional treatment has many side-effects and less bioavailability in the brain. Therefore, the necessary measurement is required to solve the limitations. Nanotechnology has been introduced to us to deliver smart solutions to these circumstances. Nanotechnology has developed to provide efficient therapies that have reduced side-effects and have increased bioavailability in the brain. This review emphasizes the emerging promise of nanoparticle-based treatment, drug delivery, and other therapeutic approaches. Besides, the advantages of different approaches on nanotechnology platforms are far better over conventional therapy in the treatment of Parkinson’s disease.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


Sign in / Sign up

Export Citation Format

Share Document