Simulation of Swirl Cup as Vane Angle with 58°

Author(s):  
Amit Kumar ◽  
S. K. Dhakad ◽  
Anurag Kulshreshtha
Keyword(s):  
Author(s):  
Bo Wang ◽  
Chi Zhang ◽  
Yuzhen Lin ◽  
Xin Hui ◽  
Jibao Li

In order to balance the low emission and wide stabilization for lean premixed prevaporized (LPP) combustion, the centrally staged layout is preferred in advanced aero-engine combustors. However, compared with the conventional combustor, it is more difficult for the centrally staged combustor to light up as the main stage air layer will prevent the pilot fuel droplets arriving at igniter tip. The goal of the present paper is to study the effect of the main stage air on the ignition of the centrally staged combustor. Two cases of the main swirler vane angle of the TeLESS-II combustor, 20 deg and 30 deg are researched. The ignition results at room inlet temperature and pressure show that the ignition performance of the 30 deg vane angle case is better than that of the 20 deg vane angle case. High-speed camera, planar laser induced fluorescence (PLIF), and computational fluids dynamics (CFD) are used to better understand the ignition results. The high-speed camera has recorded the ignition process, indicated that an initial kernel forms just adjacent the liner wall after the igniter is turned on, the kernel propagates along the radial direction to the combustor center and begins to grow into a big flame, and then it spreads to the exit of the pilot stage, and eventually stabilizes the flame. CFD of the cold flow field coupled with spray field is conducted. A verification of the CFD method has been applied with PLIF measurement, and the simulation results can qualitatively represent the experimental data in terms of fuel distribution. The CFD results show that the radial dimensions of the primary recirculation zone of the two cases are very similar, and the dominant cause of the different ignition results is the vapor distribution of the fuel. The concentration of kerosene vapor of the 30 deg vane angle case is much larger than that of the 20 deg vane angle case close to the igniter tip and along the propagation route of the kernel, therefore, the 30 deg vane angle case has a better ignition performance. For the consideration of the ignition performance, a larger main swirler vane angle of 30 deg is suggested for the better fuel distribution when designing a centrally staged combustor.


Author(s):  
P A Eynon ◽  
A Whitfield

The design of low-solidity diffuser vanes and the effect on the performance of a turbo-charger compressor is discussed. The effect of vane number and turning angle was investigated while maintaining a basic design with a solidity of 0.69 and a leading edge angle of 75°. This large leading edge angle was specifically chosen so that the vane would be aligned with the low flowrates close to surge. Tests were initially conducted with six, eight and ten vanes and a turning angle of 10°. Based on these results the ten-vane design was selected for further investigation with 15 and 20° of vane turning; this led to vane exit angles of 60 and 55° respectively. All results are compared with those obtained with the standard vaneless diffuser configuration and it was shown that all designs increased and shifted the peak pressure ratio to reduced flowrates. The peak efficiency was reduced relative to that obtained with the vaneless diffuser. Despite the low-solidity configuration none of the vane designs provided a broad operating range without the use of a variable geometry configuration. This was attributed to the selection of a large leading edge vane angle.


Fuel ◽  
2010 ◽  
Vol 89 (8) ◽  
pp. 1973-1984 ◽  
Author(s):  
Jianping Jing ◽  
Zhengqi Li ◽  
Zhichao Chen ◽  
Guangkui Liu ◽  
Chunlong Liu
Keyword(s):  

Author(s):  
H. S. Alkabie ◽  
G. E. Andrews

The influence of vane angle and hence swirl number of a radial swirler on the weak extinction, combustion inefficiency and NOx emissions was investigated at lean gas turbine combustor primary zone conditions. A 140mm diameter atmospheric pressure low NOx combustor primary zone was developed with a Mach number simulation of 30% and 43% of the combustor air flow into the primary zone through a curved blade radial swirler. The range of radial swirler vane angles was 0–60 degrees and central radially outward fuel injection was used throughout with a 600K inlet temperature. For zero vane angle radially inward jets were formed that impinged and generated a strong outer recirculation. This was found to have much lower NOx characteristics compared with a 45 degree swirler at the same pressure loss. However, the lean stability and combustion efficiency in the near weak extinction region was not as good. With swirl the central recirculation zone enhanced the combustion efficiency. For all the swirl vane angles there was little difference in combustion inefficiency between the swirlers. However, the NOx emissions were reduced at the lowest swirl angles and vane angles in the range 20–30 degrees were considered to be the optimum for central injection. NOx emissions for central injection as low as 5ppm at 15% oxygen and 1 bar were demonstrated for zero swirl and 20 degree swirler vane angle. This would scale to well under 25 ppm at pressure for all current industrial gas turbines.


Author(s):  
Moyse´s Alberto Navarro ◽  
Andre´ Augusto Campagnole dos Santos

The spacer grids exert great influence on the thermal hydraulic performance of the PWR fuel assembly. The presence of the spacers has two antagonistic effects on the core: an increase of pressure drop due to constriction on the coolant flow area and increase of the local heat transfer downstream the grids caused by enhanced coolant mixing. The mixing vanes, present in most of the spacer grid designs, cause a cross and swirl flow between and in the subchannels, enhancing even more the local heat transfer at the cost of more pressure loss. Due to this important hydrodynamic feature the spacer grids are often improved aiming to obtain an optimal commitment between pressure drop and enhanced heat transfer. In the present work, the fluid dynamic performance downstream a 5 × 5 rod bundle with spacer grids is analyzed with a commercial CFD code (CFX 11.0). Eleven different split vane spacer grids with angles from 16° to 36° and a spacer without vanes were evaluated. The computational domain extends from ∼10 Dh upstream to ∼50 Dh downstream the spacer grids. The standard k-ε turbulence model with scalable wall functions and the total energy model were used in the simulations. The results show a considerable increase of the average Nusselt number and secondary mixing with the angle of the vane up to ∼20 Dh downstream the spacer, reducing greatly the influence of the vane angle beyond this region. As expected, the pressure loss through the spacer grid also showed considerable increase with the vane angle.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahmed Ketata ◽  
Zied Driss

PurposeVariable geometry turbine (VGT), a key component of modern internal combustion engines (ICE) turbochargers, is increasingly used for better efficiency and reduced exhaust gas emissions. The aim of this study is the development of a new meanline FORTRAN code for accurate performance and loss assessment of VGTs under a wider operating range. This code is a useful alternative tool for engineers for fast design of VGT systems where higher efficiency and minimum loss are being required.Design/methodology/approachThe proposed meanline code was applied to a variable geometry mixed flow turbine at different nozzle vane angles and under a wide range of rotational speed and the expansion ratio. The numerical methodology was validated through a comparison of the predicted performance to test data. The maps of the mass flow rate as well as the efficiency of the VGT system are discussed for different nozzle vane angles under a wide range of rotational speed. Based on the developed model, a breakdown loss analysis was carried out showing a significant effect of the nozzle vane angle on the loss distribution.FindingsResults indicated that the nozzle angle of 70° has led to the maximum efficiency compared to the other investigated nozzle vane angles ranging from 30° up to 80°. The results showed that the passage loss was significantly reduced as the nozzle vane angle increases from 30° up to 70°.Originality/valueThis paper outlines a new meanline approach for variable geometry turbocharger turbines. The developed code presents the novelty of including the effect of the vane radii variation, due to the pivoting mechanism of the nozzle ring. The developed code can be generalized to either radial or mixed flow turbines with or without a VGT system.


Author(s):  
Kai U. Ziegler ◽  
Heinz E. Gallus ◽  
Reinhard Niehuis

The interaction between impeller and diffuser is considered to have strong influence on the flow in highly loaded centrifugal compressors. However, the knowledge about this influence is still not satisfying. This two-part paper presents an experimental investigation of the effect of impeller-diffuser interaction on the unsteady and the time averaged flow configuration in impeller and diffuser and the performance of these components. The flat wedge vaned diffuser of the investigated stage allows an independent adjustment of diffuser vane angle and radial gap between impeller exit and diffuser vane inlet. Attention is mainly directed to the radial gap, as it determines the intensity of the impeller-diffuser interaction. In part I it was shown that smaller radial gaps improve diffuser pressure recovery, whereas impeller efficiency is hardly affected. Part II focuses on the reasons for these effects. Measurements with a laser-2-focus velocimeter in the highly unsteady flow field between the impeller exit region and diffuser throat were performed at three different diffuser geometries allowing a detailed flow analysis. Especially the unsteady results show that for a smaller radial gap more impeller wake fluid is conveyed towards the highly loaded diffuser vane pressure side reducing its loading and leading to a better diffusion in the diffuser channel. Concerning the impeller flow, it was found that a smaller radial gap is leading to a noticeable reduction of the wake region at impeller exit. The experimental results are intended to be published as an open CFD testcase under the name “Radiver”.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Zulkifli Abdul Ghaffar ◽  
Salmiah Kasolang ◽  
Ahmad Hussein Abdul Hamid ◽  
Diyar I. Ahmed ◽  
Khairul Imran Sainan ◽  
...  

Swirl effervescent atomizer consists of two atomization mechanisms, effervescent and swirl. For a swirl-related atomizer, the air/gas core diameter was reported to be one of the factors affecting the widening of spray angle. A wider spray angle is important to provide a better spray distribution. The characteristic of gas core in an inside-out swirl effervescent atomizer was investigated as part of the study in understanding the mechanism of this type of atomization. The interaction effects between three independent parameters (i.e. swirl-generating vane angle, gas flowrate and discharge orifice diameter) on the size and characteristics of the gas core were investigated. Water and nitrogen gas were used respectively as the working fluid and atomization gas. The high-speed shadowgraph technique was utilized to record the videos of the gas core structures. The video recordings were converted to image sequences and analyzed using an image processing software. It was concluded that a larger gas core was produced with an increasing vane angle or gas flowrate. The increasing gas flowrate tends to increase the gas core size for all cases of the vane angle. Increasing the orifice diameter tends to increase the gas core size for all cases of the gas flowrate. The interaction between the orifice diameter and swirl-generating vane angle on the size of the gas core was inconclusive.


Sign in / Sign up

Export Citation Format

Share Document