The Effect of Sisal Fiber on Mechanical Strength of Concrete M20 Grade

Author(s):  
Celso Januário Baúque ◽  
Ankit Thakur ◽  
Bhartesh
BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5710-5724
Author(s):  
Aboubaker I. B. Idriss ◽  
Jian Li ◽  
Yangwei Wang ◽  
Yanling Guo ◽  
Elkhawad A. Elfaki

A new type of sustainable material, i.e., a sisal fiber/poly-ether sulfone composite (SFPC), which is energy-efficient, environmentally friendly, and has a low cost, was developed for laser sintering additive manufacturing. This study was performed to explore the effects of the processing parameters on the SFPC composite parts produced via selective laser sintering (SLS). The effects of the laser sintering processing parameters, i.e., the preheating temperature, laser power, and scan speed, were studied. Bending and tensile testing of the SFPC specimens was successfully performed via SLS. The effect of the processing parameters on the SLS in terms of the mechanical strength of the laser-sintered parts was investigated. The results determined that the processing parameters had a significant effect on the mechanical strength of the sintered SFPC parts. When the preheating temperature and laser power were increased in the processing SLS system, the mechanical strength of the sintered SFPC parts was significantly increased. However, the scanning speed had an inverse proportional relationship to the mechanical strength of the SFPC SLS parts.


2020 ◽  
Vol 846 ◽  
pp. 181-188
Author(s):  
Harini Sosiati ◽  
Yuda Aria Binangun ◽  
Arya Putra Utama ◽  
Sudarisman

Sisal, carbon, and poly-methyl methacrylate (PMMA) are the component materials that have been developed for the biomedical composite. However, characterization of the mechanical properties of the composites affected by some modified treatments is still opened for discussion. Sisal/poly-methyl methacrylate (PMMA) and sisal/carbon/PMMA composites with 30% fiber content and 6 mm fiber length were manufactured using a cold press molding at room temperature for about 60 min curing time. Tensile and bending properties of the composites were investigated by the influence of alkalization, the addition of maleic-anhydride-grafted polypropylene (MAPP) and hybridization of sisal and carbon fibers. The results indicated that the addition of MAPP (3, 5 and 10 wt. %) increases the tensile and flexural strengths of sisal/PMMA composites which are higher than the composites reinforced with alkali-treated and untreated sisal fibers. The addition of 5 % MAPP resulted in more effective improvement in mechanical properties compared to the effect of alkalization. However, a significant enhancement of tensile properties was shown by the hybridization effect of sisal and carbon with a ratio of 1:1 and 1:2 in sisal/carbon/PMMA composites. Scanning electron microscopy (SEM) of tensile fracture surfaces confirmed the presence of a functional relationship between the high mechanical strength of the composites with excellent adhesion between sisal fiber and PMMA by introducing 5% MAPP. Relatively homogeneous fiber dispersion in the matrix either sisal fibers or mixed sisal and carbon fibers within the PMMA matrix with sisal/carbon ratio of 1:2 have also contributed to the improvement of the mechanical strength. The use of alkali-treated sisal and HNO3-treated carbon fibers had promoted a remarkable increase in tensile strength of the sisal/carbon/PMMA hybrid composites.


BioResources ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1338-1353
Author(s):  
Jian Li ◽  
Aboubaker I. B. Idriss ◽  
Yanling Guo ◽  
Yangwei Wang ◽  
Zhiqiang Zhang ◽  
...  

Selective Laser Sintering (SLS) technology can be utilized to recycle residues from forestry and agriculture, thereby alleviating shortages of materials and reducing energy consumption by producing wood-plastic pieces for industrial application. The mechanical strength of wood-plastic SLS parts is low, which restricts the application of this technology. In this study, a novel type of sisal fiber/poly-(ether sulfone) (PES) composite was prepared using a polymer mixing method in order to improve the mechanical properties of SLS parts. Single-layer sintering method was adopted to determine the proper processing parameters. The mechanical properties of the parts with different ingredient ratios and different particle sizes of sisal fiber before and after post-processing were tested using a universal testing machine. The morphology was examined using scanning electron microscopy (SEM). Results showed that the mechanical properties of the printed parts were relatively enhanced; when the mixing ratio of composite powder was 10/90 wt/wt. In addition, the part fabricated by powder of particles size less than 0.105 mm (0.125 mm ≥ PS < 0.105mm) had the best mechanical strength. Moreover, the post-wax treatment significantly improved the strength of the parts, and the surfaces became smoother.


2019 ◽  
Vol 35 (4) ◽  
pp. 485-496
Author(s):  
S. RAJKUMAR ◽  
◽  
R. JOSEPH BENSINGH ◽  
M. ABDUL KADER ◽  
SANJAY K NAYAK ◽  
...  

Author(s):  
Avilash Carpenter ◽  
M.K. Gupta ◽  
Neetesh Kumar Jain ◽  
Urvashi Sharma ◽  
Rahul Sisodiya

Aim: The main of the study is to formulate and develop orally disintegrating fast dissolving tablet of Metoclopramide hydrochloride. Material & Methods: Before formulation and development of selected drug, the standard curve in buffer was prepared and absorbance at selected maxima was taken. Then two different disintegrating agents were selected and drug was mixed with disintegrating agents in different ratio. Various Preformulation parameters and evaluation of tablet i.e. disintegration time, dissolution time, friability, hardness, thickness were measured by standard procedure. Result & Discussion: The angle of repose for all the batches prepared. The values were found to be in the range of 30.46 to 36.45, which indicates good flow property for the powder blend according to the USP. The bulk density and tapped density for all the batches varied from 0.49 to 0.54 g/mL and 0.66 to 0.73, respectively. Carr’s index values were found to be in the range of 23.33 to 25.88, which is satisfactory for the powders as well as implies that the blends have good compressibility. Hausner ratio values obtained were in the range of 1.22 to 1.36, which shows a passable flow property for the powder blend based on the USP. The results for tablet thickness and height for all batches was found to range from 4.45 to 4.72 mm and 3.67 to 3.69 mm, respectively. Hardness or breaking force of tablets for all batches was found to range from 32.8 to 36.2 N. Tablet formulations must show good mechanical strength with sufficient hardness in order to handle shipping and transportation. Friability values for all the formulations were found to be in the range of 0.22 % to 0.30 %. Conclusion: Orally disintegrating tablets were compressed in order to have sufficient mechanical strength and integrity to withstand handling, shipping and transportation. The formulation was shown to have a rapid disintegration time that complied with the USP (less than one minute). The data obtained from the stability studies indicated that the orally disintegrating mini-tablets of MTH were stable under different environmental storage conditions. Keywords: Formulation & Development, Fast Dissolving Tablet, Metoclopramide, Anti-Emetic Drug, Oral Disintegrating Tablet


2003 ◽  
Vol 766 ◽  
Author(s):  
Raymond N. Vrtis ◽  
Mark L. O'Neill ◽  
Jean L. Vincent ◽  
Aaron S. Lukas ◽  
Brian K. Peterson ◽  
...  

AbstractWe report on our work to develop a process for depositing nanoporous organosilicate (OSG) films via plasma enhanced chemical vapor deposition (PECVD). This approach entails codepositing an OSG material with a plasma polymerizable hydrocarbon, followed by thermal annealing of the material to remove the porogen, leaving an OSG matrix with nano-sized voids. The dielectric constant of the final film is controlled by varying the ratio of porogen precursor to OSG precursor in the delivery gas. Because of the need to maintain the mechanical strength of the final material, diethoxymethylsilane (DEMS) is utilized as the OSG precursor. Utilizing this route we are able to deposit films with a dielectric constant of 2.55 to 2.20 and hardness of 0.7 to 0.3 GPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document