Patterns of denitrification loss from grazed grassland: Effects of N fertilizer inputs at different sites

1991 ◽  
Vol 131 (1) ◽  
pp. 77-88 ◽  
Author(s):  
S. C. Jarvis ◽  
D. Barraclough ◽  
J. Williams ◽  
A. J. Rook
2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


1995 ◽  
Vol 25 (2) ◽  
pp. 208-214 ◽  
Author(s):  
J.S. Shumway ◽  
H.N. Chappell

The Diagnosis and Recommendation Integrated System (DRIS) has been used successfully in agricultural crops and holds promise for use in forest stands. This study used soil tests to develop DRIS norms and evaluate their effectiveness in coastal Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) forests. DRIS norms for nitrogen, phosphorus, potassium, and calcium were developed using soil test and site index data from 72 soil series that commonly support Douglas-fir in western Washington. The norms were tested using soil test and stand basal area growth response data from 20 thinned and 30 unthinned N fertilizer test sites in coastal Washington and Oregon. Response to urea fertilizer in thinned stands averaged 34% and 43% for 224 and 448 kg N•ha−1, respectively, when N was identified as the most limiting nutrient. When N was not the most limiting nutrient, N response averaged 8% and 10% for 224 and 448 kg N•ha−1, respectively. Results were similar in unthinned stands and thinned stands, although response to fertilizer appeared to be slightly less in unthinned stands when N was the most limiting nutrient. DRIS correctly classified 25 of the 33 sites (76%) where N fertilizer increased growth by more than 15%. More importantly, 13 of the 17 (76%) sites that responded by less than 15% were correctly identified by DRIS. The results clearly indicate that N fertilizer response is dependent on the interactions (balance) between soil nutrients at a given site. Future soil diagnostic work needs to focus on techniques, like DRIS, that provide an assessment of these interactions.


Author(s):  
Betina Nørgaard Pedersen ◽  
Bent T. Christensen ◽  
Luca Bechini ◽  
Daniele Cavalli ◽  
Jørgen Eriksen ◽  
...  

Abstract The plant availability of manure nitrogen (N) is influenced by manure composition in the year of application whereas some studies indicate that the legacy effect in following years is independent of the composition. The plant availability of N in pig and cattle slurries with variable contents of particulate matter was determined in a 3-year field study. We separated cattle and a pig slurry into liquid and solid fractions by centrifugation. Slurry mixtures with varying proportions of solid and liquid fraction were applied to a loamy sand soil at similar NH4+-N rates in the first year. Yields and N offtake of spring barley and undersown perennial ryegrass were compared to plots receiving mineral N fertilizer. The first year N fertilizer replacement value (NFRV) of total N in slurry mixtures decreased with increasing proportion of solid fraction. The second and third season NFRV averaged 6.5% and 3.8% of total N, respectively, for cattle slurries, and 18% and 7.5% for pig slurries and was not related to the proportion of solid fraction. The estimated net N mineralization of residual organic N increased nearly linearly with growing degree days (GDD) with a rate of 0.0058%/GDD for cattle and 0.0116%/GDD for pig slurries at 2000–5000 GDD after application. In conclusion NFRV of slurry decreased with increasing proportion of solid fraction in the first year. In the second year, NFRV of pig slurry N was significantly higher than that of cattle slurry N and unaffected by proportion between solid and liquid fraction.


2021 ◽  
Vol 13 (14) ◽  
pp. 7597
Author(s):  
Bálint Balázs ◽  
Eszter Kelemen ◽  
Tiziana Centofanti ◽  
Marta W. Vasconcelos ◽  
Pietro P. M. Iannetta

The food- and feed-value systems in the European Union are not protein self-sufficient. Despite the potential of legume-supported production systems to reduce the externalities caused by current cultivation practices (excessive use of N fertilizer) and improve the sustainability of the arable cropping systems and the quality of human diets, sufficient production of high-protein legume grains in Europe has not been achieved due to multiple barriers. Identifying the barriers to the production and consumption of legumes is the first step in realizing new pathways towards more sustainable food systems of which legumes are integral part. In this study, we engage stakeholders and decision-makers in a structured communication process, the Delphi method, to identify policy interventions leveraging barriers that hinder the production and consumption of legumes in the EU. This study is one of a kind and uses a systematic method to reach a common understanding of the policy incoherencies across sectors. Through this method we identify policy interventions that may promote the production of legumes and the creation of legume-based products in the EU. Policies that encourage reduced use of inorganic N fertilizer represent an important step toward a shift in the increased cultivation of legumes. Relatedly, investment in R&D, extension services, and knowledge transfer is necessary to support a smooth transition from the heavy use of synthetic N fertilizer in conventional agriculture. These policy interventions are discussed within current EU and national plant-protein strategies.


2021 ◽  
Vol 182 ◽  
pp. 105997
Author(s):  
Davide Cammarano ◽  
Bruno Basso ◽  
Jonathan Holland ◽  
Alberto Gianinetti ◽  
Marina Baronchelli ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 395
Author(s):  
Alex J. Lindsey ◽  
Adam W. Thoms ◽  
Marshall D. McDaniel ◽  
Nick E. Christians

Soil health and sustainable management practices have garnered much interest within the turfgrass industry. Among the many practices that enhance soil health and sustainability are applying soil additives to enhance soil biological activity and reducing nitrogen (N) inputs—complimentary practices. A two-year study was conducted to investigate if reduced N fertilizer rates applied with humic substances could provide comparable turfgrass quality as full N rates, and whether humic fertilizers would increase biological aspects of soil health (i.e., microbial biomass and activity). Treatments included synthetic fertilizer with black gypsum (SFBG), poly-coated humic-coated urea (PCHCU; two rates), urea + humic dispersing granules (HDG; two rates), urea, stabilized nitrogen, HDG, and a nontreated control. Reduced rates of N with humic substances maintained turfgrass quality and cover, and reduced clipping biomass compared to full N rates. There were no differences in soil physical and chemical properties besides soil sulfur (S) concentration. SFBG resulted in the highest soil S concentration. Fertilizer treatments had minimal effect on microbial biomass and other plant-available nutrients. However, PCHCU (full rate) increased potentially mineralizable carbon (PMC) and N (PMN) by 68% and 59%, respectively, compared to the nontreated control. Meanwhile SFBG and stabilized nitrogen also increased PMC and PMN by 77% and 50%, and 65% and 59%, respectively. Overall, applications of reduced N fertilizer rates with the addition of humic substances could be incorporated into a more sustainable and environmentally friendly turfgrass fertilizer program.


2019 ◽  
Vol 5 (1) ◽  
pp. 1707020
Author(s):  
Amare Aleminew ◽  
Getachew Alemayehu ◽  
Enyew Adgo ◽  
Tilahun Tadesse ◽  
Manuel Tejada Moral

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 921
Author(s):  
Rania M. A. Nassar ◽  
Engy A. Seleem ◽  
Gianluca Caruso ◽  
Agnieszka Sekara ◽  
Magdi T. Abdelhamid

Egyptian henbane (Hyoscyamus muticus L.) plants are rich sources of alkaloids used in pharmaceutical products. Recently, rising efforts have been devoted to reducing mineral fertilizer supply, production cost, and environmental pollution via decreasing the doses of nitrogenous fertilizers and adopting biofertilizer farming systems. Two field experiments were conducted to examine the potential role of N fixing bacteria Azotobacter spp. and Azospirillum spp. on the growth, mineral status, tropane alkaloids, leaf anatomy, and seed yield of Egyptian henbane grown with different levels of mineral nitrogen fertilizer, i.e., 25%, 50%, and 100% of the recommended dose, equal to 30, 60, and 120 kg N ha−1. N fertilizer improved growth, mineral elements, tropane alkaloids, seed yield, and yield components of Egyptian henbane, which showed a gradually rising trend as the rate of N fertilizer increased. High doses of N fertilizer presumably elicited favorable changes in the anatomical structure of Egyptian henbane leaves. The application of 50% N dose plus N fixing bacteria affected Egyptian henbane trials similarly to 100% of recommended N dose. In conclusion, the N fixing bacteria proved to be a sustainable tool for a two-fold reduction in the recommended dose of mineral N fertilizer and the sustainable management of Egyptian henbane nutrition.


1970 ◽  
Vol 75 (3) ◽  
pp. 517-521 ◽  
Author(s):  
D. I. H. Jones

SUMMARYThe effect of three levels of N fertilizer on the ensiling characteristics of S. 24 perennial ryegrass and S. 37 cocksfoot have been examined during first growth in two growing seasons. The effects of sucrose supplementation, inoculation with Lactobacillus plantarum and wilting were also examined in certain cuts. All silages were made in the laboratory using a small scale vacuum silage technique.The perennial ryegrass herbage was higher in water soluble carbohydrates than the cocksfoot, N fertilizers decreased soluble carbohydrates and dry-matter content in both species. Buffering capacity was not consistently different between grasses or between N levels.Herbage was cut at two stages of maturity in the first year. In the first cut (8 days before ear emergence), perennial ryegrass silages were well preserved irrespective of the amount of N applied to the grass. Cocksfoot silages were well preserved only when the lowest level of N fertilizer had been applied (50 kg/ha). Supplementation of cocksfoot with sucrose prior to ensiling markedly improved silage quality, but inoculation had no effect. In the second cut (26 days after ear emergence) the grasses were higher in drymatter content and showed a lower buffering capacity, but neither ryegrass nor cocksfoot silages were well preserved unless supplemented with sucrose prior to ensiling.In the second year of the experiment only one cut was taken (9 days after ear emergence). As in the previous year, silages made from herbage at a late stage of growth were poorly preserved. Wilting prior to ensiling resulted in well-preserved silages.It is concluded that the need for additives and wilting to ensure satisfactory preservation varies in relation to the variety of grass used and its stage of growth.


Sign in / Sign up

Export Citation Format

Share Document