scholarly journals The Nitrogen-Fixing Bacteria—Effective Enhancers of Growth and Chemical Composition of Egyptian Henbane under Varied Mineral N Nutrition

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 921
Author(s):  
Rania M. A. Nassar ◽  
Engy A. Seleem ◽  
Gianluca Caruso ◽  
Agnieszka Sekara ◽  
Magdi T. Abdelhamid

Egyptian henbane (Hyoscyamus muticus L.) plants are rich sources of alkaloids used in pharmaceutical products. Recently, rising efforts have been devoted to reducing mineral fertilizer supply, production cost, and environmental pollution via decreasing the doses of nitrogenous fertilizers and adopting biofertilizer farming systems. Two field experiments were conducted to examine the potential role of N fixing bacteria Azotobacter spp. and Azospirillum spp. on the growth, mineral status, tropane alkaloids, leaf anatomy, and seed yield of Egyptian henbane grown with different levels of mineral nitrogen fertilizer, i.e., 25%, 50%, and 100% of the recommended dose, equal to 30, 60, and 120 kg N ha−1. N fertilizer improved growth, mineral elements, tropane alkaloids, seed yield, and yield components of Egyptian henbane, which showed a gradually rising trend as the rate of N fertilizer increased. High doses of N fertilizer presumably elicited favorable changes in the anatomical structure of Egyptian henbane leaves. The application of 50% N dose plus N fixing bacteria affected Egyptian henbane trials similarly to 100% of recommended N dose. In conclusion, the N fixing bacteria proved to be a sustainable tool for a two-fold reduction in the recommended dose of mineral N fertilizer and the sustainable management of Egyptian henbane nutrition.

2003 ◽  
Vol 83 (5) ◽  
pp. 497-505 ◽  
Author(s):  
A. N’Dayegamiye ◽  
S. Huard ◽  
Y. Thibault

Mixed paper mill sludges are an important source of N for crop production. An estimate of direct and residual N recovery is necessary for their efficient management. A 3-yr field study (1997-1999) was conducted in central Quebec, Canada, to evaluate mixed paper mill sludges (PMS) effects on corn (Zea mays L.) yields and N nutrition, N recovery and N efficiency. The effects of PMS on soil NO3-N and total N levels were also determined. The study was situated on a silt loam Baudette soil (Humic Gleysol). The treatments included 3 PMS rates (30, 60 and 90 t ha-1 on wet basis) applied alone or in combination with N fertilizer (90 and 135 kg N ha-1, respectively, for 60 and 30 t ha-1). Treatments also included a control without PMS or N fertilizer, and a complete mineral N fertilizer (180 kg N ha-1) as recommended for corn. The previous plots were split beginning with the second year of the experiment, for annual and biennal PMS applications. Similar treatments as above were made on an adjacent site to evaluate N recovery under climatic conditions in 1999. In all years, PMS applied alone significantly increased corn yields by 1.5–5 t ha-1, compared to the unfertilized control. However, corn yields and N uptake were highest from the application of PMS in combination with N fertilizer. Biennial PMS applications at 60 to 90 ha-1 significantly increased corn yields and N uptake, which suggest high PMS residual effect; however, these increases were lower than those obtained with annual PMS applications. The N efficiency varied in 1997 from 13.0 to 15.4 kg grain kg N-1 for mineral N fertilizer and ranged from 3 to 13.7 kg grain kg N-1 for PMS, decreasing proportionally to increasing PMS rates. Apparent N recovery ranged from 1 3 to 19% in 1997 and from 10 to 14% in the residual year (1998), compared to 30 and 49%, respectively, for mineral N fertilizer. Depending on the PMS rate, N recovery varied from 13 to 21% in 1999. The results indicate high N supplying capacity and high r esidual N effects of PMS, which probably influenced corn yields and N nutrition. Annual PMS applications alone or combined with mineral N fertilizer had no significant effect on soil NO3-N and total N levels. This study demonstrates that application of low PMS rate (30 t ha-1) combined with mineral N fertilizer could achieve high agronomic, economic and environmental benefits on farms. Key words: Mixed paper mill sludges, corn yields, N uptake, N efficiency, residual effects, soil N


HortScience ◽  
1999 ◽  
Vol 34 (7) ◽  
pp. 1238-1239 ◽  
Author(s):  
Brian A. Kahn ◽  
Judith L. Schroeder

Field experiments were conducted in Oklahoma in 1993 and 1994. Cowpeas [Vigna unguiculata (L.) Walp.] were grown using either noninoculated seed and 23 kg·ha–1 of preplant nitrogen (N) fertilizer (conventional) or Rhizobium-inoculated seed and no preplant N fertilizer (reduced input). Sample plants were excavated at first pod set and analyzed for nodulation and root morphology. Additional plants were harvested at the green-shell stage to determine seed yield and plant N concentration. Conventional and reduced input cowpeas did not differ in dry weight of root mass components, total root dry weight, shoot dry weight, shoot: root ratio, nodule distribution among root morphological components, total nodule fresh weight, plant N concentration, or green-shell seed yield. Most of the nodule fresh weight generally was associated with nodules on the basal and lateral roots. Results indicate that cowpea root characteristics are not necessarily altered by the presence or absence of added N fertilizer at a given location.


1998 ◽  
Vol 46 (2) ◽  
pp. 139-155 ◽  
Author(s):  
W. Van Dijk ◽  
G. Brouwer

In 1991-94 the effects of subsurface band application of mineral N fertilizer on the N recovery and dry matter (DM) yield of silage maize were studied in nine field experiments on sandy and clay soils in the Netherlands. In the early crop stages and especially in the clay soil experiments, banded N had a significant negative effect on the N uptake and DM yield compared to broadcast N, possibly due to salt damage. At final harvest, however, banding significantly increased the N uptake and DM yield in most of the experiments. The apparent N recovery increased by circa 20-25% (absolute). The positive effects indicated that band application improved the efficiency of the N fertilizer. It could be calculated that banding allowed a reduction in the N rate of 20-30% without significant effects on the N uptake and DM yield of the silage maize. Benefits of banding were positively (P


1996 ◽  
Vol 127 (4) ◽  
pp. 475-486 ◽  
Author(s):  
M. F. Allison ◽  
M. J. Armstrong ◽  
K. W. Jaggard ◽  
A. D. Todd ◽  
G. F. J. Milford

SUMMARYThe effects of different rates of N fertilizer (0–180 kg N/ha) were tested on the growth, yield and processing quality of sugarbeet in 34 field experiments in England between 1986 and 1988. The experiments were performed using soil types, locations and management systems that were representative of the commercial beet crop in the UK. The responses obtained showed that current recommendations for N fertilizer use are broadly correct, but large differences occurred on some soil types, in some years, between the recommended amounts and the experimentally determined optima for yield. The divergence was largest when organic manures had been applied in the autumn before the beet crop. Calculations using a simple nitrate-leaching model showed that much of the N in the manures was likely to be leached, the extent of leaching being much less if the manure application was delayed until spring. In these circumstances, spring measurement of inorganic mineral N in the soil could improve fertilizer recommendations. In situations where higher than optimum rates of fertilizer N were used, the extra N had little effect on yield. Increasing the rate from 0 to 180 kg N/ha increased the amount of nitrate left in the soil at harvest by only 8 kg N/ha. The amount of inorganic N released into the soil from crop residues at harvest increased by 50 kg N/ha with N application rate, and the fate of this N has not been established.


2008 ◽  
Vol 13 (3) ◽  
pp. 268 ◽  
Author(s):  
A. JENG ◽  
T. HARALDSEN ◽  
N. VAGSTAD

Meat and bone meal (MBM) contains appreciable amounts of nitrogen (N), phosphorus and calcium making it interesting as fertilizer to various crops. The effect of Norwegian MBM as N fertilizer has been evaluated in pot and field experiments. The soils used in the pot experiment were peat and a sand/peat mixture, both low in content of plant nutrients. The field experiment was carried out on a silt loam. In the pot experiment increasing amounts of MBM gave significantly increased yields, although there was a partly N immobilisation shortly after seeding the soil based on peat organic matter. In the field experiment there was no period of N immobilisation and good N effect was found also for small amounts of MBM (Total N 50 kg ha-1). At total N 100 kg ha-1 there were no significant differences in grain yield of spring wheat between the treatments with MBM, mineral N fertilizer, and combination of MBM and mineral N fertilizer (N 50 kg ha-1 from each). The results indicate that the relative N efficiency of MBM compared to mineral fertilizer is 80% or higher, if MBM is applied to cereals in spring.;


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1320-1323 ◽  
Author(s):  
Carmen Feller ◽  
Matthias Fink

The nitrogen requirement of broccoli (Brassica oleracea var. italica) ranges from 300 to 465 kg·ha–1. Recommendations for N fertilization are accordingly high. High fertilizer rates applied at planting result in a high soil mineral N content that remains high for weeks because the N requirement of the crop is low at early growth stages. Therefore, the risk of leaching is high for several weeks until the available N is finally taken up by the crop. Our study had two objectives: 1) to quantify yield responses to preplant fertilization, and 2) to test our hypothesis that the preplant fertilization rate could be reduced without yield losses by increasing the N content in the transplants and improving crop establishment. Field experiments were carried out on transplants with four levels of N content in dry matter (0.018 to 0.038 g·g–1 dry weight), which were tested in all combinations with four fertilization timings. All treatments received the same amount of N fertilizer (270 and 272 kg·ha–1 in 2001 and 2002, respectively), but with different rates of supply at the time of planting (0 to 90 kg·ha–1 N fertilizer plus 30 and 28 kg·ha–1 soil mineral N in 2001 and 2002, respectively). Total and marketable yields increased significantly with an increasing N supply at time of planting. In our experiments, in which topdressing was applied 25 days after planting, an N supply at planting of 80 to 118 kg·ha–1 was required to obtain maximum marketable yields. The N content in transplants had little effect on growth and yield, and there were no significant interactions between the N content in the transplant and fertilizer timing.


Revista CERES ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Thiago de Oliveira Vargas ◽  
Ellen Rúbia Diniz ◽  
Ricardo Henrique Silva Santos ◽  
Alysson Roberto de Almeida ◽  
Segundo Urquiaga ◽  
...  

Roots effect is not generally considered in studies assessing the performance of crops in response to green manuring. However, such effect can contribute to a better understanding of crop rotation. The aim of this study was to assess the effect of root and shoot of two legumes on the production of cabbage. The experiment was conducted in pots of 10 liters containing substrate of 2:1 soil/sand. The experiment was arranged in a factorial scheme (2x3 + 2) in a randomized block design with five replicates using two legume species (Crotalaria juncea L. and Canavalia ensiformis L), three plant parts (root, shoot, or whole plant), and two additional treatments (mineral fertilization with 100% and 50% of the recommended dose of N for growing cabbage). Pots with legume treatments received mineral fertilizer with 50% of the recommended dose of N for growing cabbage. The experimental plot consisted of a pot containing one plant of cabbage. Legumes were grown in pots and harvested at 78 days. The root biomass was determined in extra pots. Production was assessed using head fresh and dry weight. The application of the whole plant of both legume species reduced cabbage production. However, root or shoot of both legume species was equivalent to 50% of mineral N fertilization required for the cultivation of cabbage.


2018 ◽  
Vol 48 (9) ◽  
Author(s):  
André Luis Vian ◽  
Christian Bredemeier ◽  
Marcos Alexandre Turra ◽  
Cecília Paz da Silva Giordano ◽  
Elizandro Fochesatto ◽  
...  

ABSTRACT: Biomass production and nitrogen (N) accumulated in wheat shoots may be used for quantifying optimal topdressing nitrogen doses. The objective of this study was to develop and validate models for estimating the amount of biomass and nitrogen accumulated in shoots and the N topdressing dose of maximum technical efficiency in wheat using the normalized difference vegetation index (NDVI) measured by an active optical canopy sensor. Field experiments were carried out in two years and treatments consisted of N doses applied at plant emergence and as topdressing. NDVI, shoot biomass and N accumulated in shoots at the growth stage of six fully expanded leaves and grain yield were evaluated, being determined the topdressing N dose of maximum technical efficiency (DMTE). The NDVI was positively correlated to shoot biomass and N content in shoots and models for the relationship between these variables were developed and validated. The DMTE was negatively correlated with the NDVI value evaluated at the moment of N topdressing application. Thus, NDVI evaluation by an active optical canopy sensor can be used for nitrogen fertilization in variable rate, allowing the adjustment of applied N doses in different areas within a field.


2016 ◽  
Vol 41 (4) ◽  
pp. 713-723
Author(s):  
S Akther ◽  
F Ahmed ◽  
MR Islam ◽  
MA Hossen ◽  
AHMM Rahman Talukder

Field experiments were carried out in the Agronomy field of BARI, Joydebpur, RARS, Jamalpur and RARS, Ishurdi during two consecutive kharif seasons of 2012 and 2013 to determine the suitable plant spacing and optimum fertilizer dose for higher yield of mukhikachu. Three levels of spacing viz., 60 cm x 60 cm, 60 cm x 45 cm and 60 cm x 30 cm and three levels of fertilizer dose viz., recommended dose (3000-96-27-81-18 kg ha-1 of CD-N-P-K-S), 25% less than the recommended dose and 25% higher than the recommended dose were used as treatment variables. The experiments were laid out in factorial randomized complete block design with three replications. Results revealed that the closer spacing (60 cm x 30 cm) in combination with 25% higher than the recommended fertilizer dose gave the maximum edible yield of mukhikachu (two years average) at all locations (20.04 t ha-1, 20.75 t ha-1 and 16.63 t ha-1 at Joydebpur, Jamalpur and Ishurdi, respectively). The wider spacing (60 cm x 60 cm) coupled with 25% less than the recommended fertilizer dose produced the lowest yield (two years average). The maximum benefit- cost ratio (two years average) was obtained from the combination of the recommended fertilizer dose and 60 cm x 30 cm spacing, that were 2.93 at Joydebpur and 3.42 at Ishurdi, while at Jamalpur the maximum benefit-cost ratio (two years average) was found maximum from 60 cm x 30 cm spacing with 25% higher than the recommended fertilizer dose (3.12).Bangladesh J. Agril. Res. 41(4): 713-723, December 2016


2004 ◽  
Vol 84 (1) ◽  
pp. 79-88 ◽  
Author(s):  
G. W. Clayton ◽  
W. A. Rice ◽  
N. Z. Lupwayi ◽  
A. M. Johnston ◽  
G. P. Lafond ◽  
...  

Field pea (Pisum sativum L.) acreage has expanded rapidly in the past 10 yr in the Peace River Region of Alberta as well as western Canada. Understanding nitrogen dynamics of Rhizobium inoculants and applied N will provide farmers opportunities to improve N nutrition of field pea. Field experiments were conducted (a) to compare the effects of soil inoculation using granular inoculant, and seed inoculation using peat powder and liquid inoculants with an uninoculated check, on field pea nodulation and N2 fixation, and (b) to determine whether starter N is required by field pea to enhance N2 fixation. The effects of inoculant formulation on nodule number, N accumulation and N2 fixation were in the order: granular > peat powder > liquid = uninoculated. Field pea, from soil-applied inoculant, accumulated more N prior to and during podfilling than field pea with seed-applied inoculant. Fertilizer N application rates < 40 kg N ha-1 had no significant effects on biomass N at flatpod, indicating that starter N was not necessary. Application rates greater than 40 kg N ha-1 reduced nodulation, but the total amounts of N accumulated by plants did not vary. The close proximity of a highly concentrated band of N fertilizer had a greater impact on nodulation and subsequent N2 fixation than the residual soil N level. Under field conditions, soil-applied inoculant improved N nutrition of field pea compared to seed-applied inoculation, with or without applied urea-N. Key words: Granular inoculant, Pisum sativum, Rhizobium, inoculation, field pea, nodulation, N2 fixation


Sign in / Sign up

Export Citation Format

Share Document