Detection of cellulolytic activity of bacteria and fungi growing on agar surfaces

1988 ◽  
Vol 2 (3) ◽  
pp. 149-152 ◽  
Author(s):  
Tiiu Kauri ◽  
Donn J. Kushner
2020 ◽  
Vol 25 (1-2) ◽  
pp. 133-143
Author(s):  
Katarzyna Grata

Abstract Decomposition of cellulose to glucose requires complex cooperation of glycoside hydrolase enzymes. As a result of glycoside β-1,4 bonds hydrolysis, shorter chains of cellulose, oligodextrin, cellobiose and glucose are created. A number of bacteria and fungi demonstrate the capacity to degrade cellulose. Their activity can be assessed with the use of qualitative and quantitative methods. Qualitative methods with the use of e.g. Congo red, are used in screening studies, however, they do not provide information about the quantity of the produced enzyme. Spectrophotometric methods are more accurate and they measure the quantities of reducing sugars with the use of appropriate substrates, e.g. carboxymethylcellulose is used to determine endoglucanases, avicel cellulose to determine exoglucanases and Whatman filter paper to determine total cellulolytic activity. Activity of microorganisms depends not only on their species or type but also, among others, on substratum composition, cultivation conditions and the appropriate selection of parameters of the carried out enzymatic reactions.


Author(s):  
Sudarshan A ◽  
Renuka S. Talwar ◽  
Reshma S ◽  
Shilanjali B ◽  
Dayanand Agsar

Actinobacteria, conventionally known as actinomycetes are the most unique microorganisms revealing a link between bacteria and fungi. They are highly adaptable to extreme environmental condition and also exhibit a high diversity in metabolic activities. Biochemical, physiological and genetic features are mainly responsible for their higher adoptability to harsh conditions and extra cellular synthesis of wider secondary metabolites in general and enzymes and antibiotics in particular. The limestone quarry and lime powder dwellings are the harsh habitats prevailing in the northern region of Karnataka. These are the typical habitats left behind after the exploration of limestone and lime powder for highly commercial industrial activities such as production of cement and petroleum refining process respectively. In the present investigation, efforts were made to detect cellulolytic actinobacteria from lime powder dwellings. Actinobacteria confirmed by the basic colony characters, microscopic features, biochemical and physiological properties were screened for the potential cellulolytic activity. In all 54 isolates of actinobacteria were detected and screened to obtain three best cellulolytic actinobacteria, namely DSA22, DSA38 and DSA39. The maximum zone of hydrolysis on carboxymethylcellulose medium was an important criterion to screen the best cellulolytic isolates of actinobacteria. Further, the three best isolates of cellulolytic actinobacteria were screened for maximum production of extra cellular cellulase. The isolate DSA22 with higher enzyme activity (12 IU) was subjected to molecular characterization. Based on 16s rRNA analysis (BioEra Laboratory, Pune, Maharashtra) an isolate DSA 22 was identified as Streptomyces enissocaesiles.  


2019 ◽  
Vol 326 (1) ◽  
pp. 131-136
Author(s):  
S.A. Burtseva ◽  
◽  
M.N. Byrsa ◽  
S.N. Maslobrod ◽  
◽  
...  

2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


2020 ◽  
Vol 23 (2) ◽  
pp. 126-140 ◽  
Author(s):  
Christophe Tratrat

Aims and Objective: The infectious disease treatment remains a challenging concern owing to the increasing number of pathogenic microorganisms associated with resistance to multiple drugs. A promising approach for combating microbial infection is to combine two or more known bioactive heterocyclic pharmacophores in one molecular platform. Herein, the synthesis and biological evaluation of novel thiazole-thiazolidinone hybrids as potential antimicrobial agents were dissimilated. Materials and Methods: The preparation of the substituted 5-benzylidene-2-thiazolyimino-4- thiazolidinones was achieved in three steps from 2-amino-5-methylthiazoline. All the compounds have been screened in PASS antibacterial activity prediction and in a panel of bacteria and fungi strains. Minimum inhibitory concentration and minimum bacterial concentration were both determined by microdilution assays. Molecular modeling was conducted using Accelrys Discovery Studio 4.0 client. ToxPredict (OPEN TOX) and ProTox were used to estimate the toxicity of the title compounds. Results: PASS prediction revealed the potentiality antibacterial property of the designed thiazolethiazolidinone hybrids. All tested compounds were found to kill and to inhibit the growth of a vast variety of bacteria and fungi, and were more potent than the commercial drugs, streptomycin, ampicillin, bifomazole and ketoconazole. Further, in silico study was carried out for prospective molecular target identification and revealed favorable interaction with the target enzymes E. coli MurB and CYP51B of Aspergillus fumigatus. Toxicity prediction revealed that none of the active compounds was found toxic. Conclusion: Substituted 5-benzylidene-2-thiazolyimino-4-thiazolidinones, endowing remarkable antibacterial and antifungal properties, were identified as a novel class of antimicrobial agents and may find a potential therapeutic use to eradicate infectious diseases.


2019 ◽  
Vol 16 (5) ◽  
pp. 512-521 ◽  
Author(s):  
Nidhi Rani ◽  
Randhir Singh

Background: A series of novel substituted 2-mercaptoimidazoles was synthesised efficiently and in high yields using one-pot synthesis from m-hydroxyacetophenones. Methods: The structures of the newly synthesized compounds were established, their molecular activity was investigated against some bacteria and fungi were further validated using molecular docking study. Results: Reaction of o-hydroxyphenacylbromide (2) with substituted aniline and KSCN, in the presence of catalyst p-toluene sulfonic acid afforded 4(a-r) in good yield. The structure of compounds (4a-r) was confirmed by IR, NMR and MS. Conclusion: The compounds exhibited excellent antimicrobial potency against the tested microorganism.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


Sign in / Sign up

Export Citation Format

Share Document