The phase-temperature state of a hollow cylindrical casting

1996 ◽  
Vol 79 (6) ◽  
pp. 1431-1433
Author(s):  
B. D. Drobenko ◽  
V. I. Astashkin ◽  
I. I. Chupik ◽  
A. P. Bukalov
2021 ◽  
pp. 002029402110130
Author(s):  
Xian Wang ◽  
Qian-cheng Zhao ◽  
Xue-bing Yang ◽  
Bing Zeng

The historical temperature data logged in the supervisory control and data acquisition (SCADA) system contains a wealth of information that can assist with the performance optimization of wind turbines (WTs). However, mining and using these long-term data is difficult and time-consuming due to their complexity, volume, etc. In this study, we tracked and analyzed the 5-year trends of major SCADA temperature rise variables in relation to the active power of four WTs in a real wind farm. To uncover useful information, an extended version of the bins method, which calculates the standard deviation (SD) as well as the average, is proposed and adopted. The implications of the analysis for engineering practice are discussed from multiple perspectives. The research results demonstrate a change in the patterns of the main temperature rise variables in a real wind farm, completeness of the monitoring of the WT internal temperature state, influence of wind turbine aging on temperature signals, a correlation between different measurement points, and a correlation between signals from different years. The knowledge gained from this research provides a reference for the development of more practical and comprehensive condition monitoring systems and methods, as well as better operation maintenance strategies.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 698
Author(s):  
Kateryna Kostyk ◽  
Michal Hatala ◽  
Viktoriia Kostyk ◽  
Vitalii Ivanov ◽  
Ivan Pavlenko ◽  
...  

To solve a number of technological issues, it is advisable to use mathematical modeling, which will allow us to obtain the dependences of the influence of the technological parameters of chemical and thermal treatment processes on forming the depth of the diffusion layers of steels and alloys. The paper presents mathematical modeling of diffusion processes based on the existing chemical and thermal treatment of steel parts. Mathematical modeling is considered on the example of 38Cr2MoAl steel after gas nitriding. The gas nitriding technology was carried out at different temperatures for a duration of 20, 50, and 80 h in the SSHAM-12.12/7 electric furnace. When modeling the diffusion processes of surface hardening of parts in general, providing a specifically given distribution of nitrogen concentration over the diffusion layer’s depth from the product’s surface was solved. The model of the diffusion stage is used under the following assumptions: The diffusion coefficient of the saturating element primarily depends on temperature changes; the metal surface is instantly saturated to equilibrium concentrations with the saturating atmosphere; the surface layer and the entire product are heated unevenly, that is, the product temperature is a function of time and coordinates. Having satisfied the limit, initial, and boundary conditions, the temperature distribution equations over the diffusion layer’s depth were obtained. The final determination of the temperature was solved by an iterative method. Mathematical modeling allowed us to get functional dependencies for calculating the temperature distribution over the depth of the layer and studying the influence of various factors on the body’s temperature state of the body.


Author(s):  
Hideki Hamatani ◽  
Funinori Watanabe ◽  
Nobuo Mizuhashi ◽  
Sunao Takeuchi ◽  
Yoshiaki Hirota ◽  
...  

High frequency - electric resistance welded (HF-ERW) pipe has been successfully used for many years for a number of applications. The benefits of HF-ERW pipe are considerable, including a higher dimensional tolerance and lower prices than seamless pipe and UO pipe. The conventional weld seam produced by HF-ERW, however, often has a relatively low toughness. We have developed an automatic heat input control technique based on ERW phenomena that relies on optical and electrical monitoring methods and has been shown to result in a significant improvement in the toughness. Shielding of the weld area must also be considered as a key factor in the formation of a sound weld. It has been shown that an inert cold gas (e.g., at room temperature) shielding technique is effective for maintaining a stable low oxygen state in the weld area that inhibits the formation of penetrator, a pancake oxide inclusions. Compared to the cold gas shielding technique, high temperature gas shielding, due to its higher kinetic viscosity coefficient, should make it easier to sustain a higher laminar flow, thus leading to a rather low air entrainment in the shielding gas. In addition, plasma is a much higher temperature state (∼6000 K), and the dissociated gases can react with the entrained oxygen; plasma jets should, therefore, enhance the overall shielding effects. Moreover, oxides on the strip edges can be expected to melt and/or be reduced by the high temperature plasma jets. Nippon Steel has developed a plasma torch that can generate a long and wide laminar argon – nitrogen – (hydrogen) jet. This paper describes the results obtained from our investigation of the effects of a plasma jet shield on the weld area of high strength line pipe with a yield strength grade of X65. Preliminary attempts in applying this novel shielding technique has been found, as expected, to demonstrate extremely low numbers of weld defects and a good low temperature toughness of the HF-ERW seam.


2014 ◽  
Vol 90 (2) ◽  
Author(s):  
Hyejin Ryu ◽  
F. Wolff-Fabris ◽  
J. B. Warren ◽  
M. Uhlarz ◽  
J. Wosnitza ◽  
...  

1982 ◽  
Vol 17 (1) ◽  
pp. 45-52 ◽  
Author(s):  
D J Beauchamp ◽  
E G Ellison

A servo-hydraulic test rig capable of applying combined temperature and strain or load cycles has been developed and commissioned. The nature of the test has dictated the specimen form as a hollow, hour-glass type. The critical problem of a suitable extensometer for temperature and strain cycling has been solved. The device designed and produced shows negligible transient temperature effects, has a high resolution of better than 0.1 μm, and is mechanically very stable. The heating and cooling is controlled by an induction heating system with grip cooling; additional cooling is available using compressed air passing through the hollow specimen. The system is capable of following a temperature ramp to within 1°C linearity. The thermal strain associated with a temperature cycle is compensated for using a microprocessor system specially developed for the purpose, which also enables a mechanical strain-stress loop to be plotted during a test. Both ‘in-phase’ and ‘out-of-phase’ temperature/strain cycles have been carried out and development continues to include dwell periods.


2005 ◽  
Vol 73 (9) ◽  
pp. 5961-5977 ◽  
Author(s):  
Krista Venecia ◽  
Glenn M. Young

ABSTRACT Pathogenic biovars of Yersinia enterocolitica maintain the well-studied plasmid-encoded Ysc type III secretion (TTS) system, which has a definitive role in virulence. Y. enterocolitica biovar 1B additionally has a distinct chromosomal locus, the Yersinia secretion apparatus pathogenicity island (YSA PI) that encodes the Ysa TTS system. The signals to which the Ysa TTS system responds and its role in virulence remain obscure. This exploratory study was conducted to define environmental cues that promote the expression of Ysa TTS genes and to define how the Ysa TTS system influences bacterium-host interactions. Using a genetic approach, a collection of Y. enterocolitica Ysa TTS mutants was generated by mutagenesis with a transposon carrying promoterless lacZYA. This approach identified genes both within and outside of the YSA PI that contribute to Ysa TTS. Expression of these genes was regulated in response to growth phase, temperature, NaCl, and pH. Additional genetic analysis demonstrated that two regulatory genes encoding components of the YsrR-YsrS (ysrS) and RcsC-YojN-RcsB (rcsB) phosphorelay systems affect the expression of YSA PI genes and each other. The collection of Ysa TTS-defective transposon mutants, along with other strains carrying defined mutations that block Ysa and Ysc TTS, was examined for changes in virulence properties by using the BALB/c mouse model of infection. This analysis revealed that the Ysa TTS system impacts the ability of Y. enterocolitica to colonize gastrointestinal tissues. These results reveal facets of how Y. enterocolitica controls the function of the Ysa TTS system and uncovers a role for the Ysa TTS during the gastrointestinal phase of infection.


1999 ◽  
Vol 572 ◽  
Author(s):  
Jingxi Sun ◽  
J. M. Redwing ◽  
T. F. Kuech

ABSTRACTA comparative study of two different MOVPE reactors used for GaN growth is presented. Computational fluid dynamics (CFD) was used to determine common gas phase and fluid flow behaviors within these reactors. This paper focuses on the common thermal fluid features of these two MOVPE reactors with different geometries and operating pressures that can grow device-quality GaN-based materials. Our study clearly shows that several growth conditions must be achieved in order to grow high quality GaN materials. The high-temperature gas flow zone must be limited to a very thin flow sheet above the susceptor, while the bulk gas phase temperature must be very low to prevent extensive pre-deposition reactions. These conditions lead to higher growth rates and improved material quality. A certain range of gas flow velocity inside the high-temperature gas flow zone is also required in order to minimize the residence time and improve the growth uniformity. These conditions can be achieved by the use of either a novel reactor structure such as a two-flow approach or by specific flow conditions. The quantitative ranges of flow velocities, gas phase temperature, and residence time required in these reactors to achieve high quality material and uniform growth are given.


2021 ◽  
Author(s):  
Gaetana Ganci ◽  
Annalisa Cappello ◽  
Giuseppe Bilotta ◽  
Giuseppe Pollicino ◽  
Luigi Lodato

<p>The application of remote sensing for monitoring, detecting and analysing the spatial and extents and temporal changes of waste dumping sites and landfills could become a cost-effective and powerful solution. Multi-spectral satellite images, especially in the thermal infrared, can be exploited to characterize the state of activity of a landfill.  Indeed, waste disposal sites, during the period of activity, can show differences in surface temperature (LST, Land Surface Temperature), state of vegetation (estimated through NDVI, Normalized Difference Vegetation Index) or soil moisture (estimated through NDWI, Normalized Difference Water Index) compared to neighboring areas. Landfills with organic waste typically show higher temperatures than surrounding areas due to exothermic decomposition activities. In fact, the biogas, in the absence or in case of inefficiency of the conveying plants, rises through the layers of organic matter and earth (landfill body) until it reaches the surface at a temperature of over 40 ° C. Moreover, in some cases, leachate contamination of the aquifers can be identified by analyzing the soil moisture, through the estimate of the NDWI, and the state of suffering of the vegetation surrounding the site, through the estimate of the NDVI. This latter can also be an indicator of soil contamination due to the presence of toxic and potentially dangerous waste when buried or present nearby. To take into account these facts, we combine the LST, NDVI and NDWI indices of the dump site and surrounding areas in order to characterize waste disposal sites. Preliminary results show how this approach can bring out the area and level of activity of known landfill sites. This could prove particularly useful for the definition of intervention priorities in landfill remediation works.</p>


2003 ◽  
Vol 95 (5) ◽  
pp. 1896-1900
Author(s):  
Wenfei Yan ◽  
Stephen B. Hall

Captive bubbles are commonly used to determine how interfacial films of pulmonary surfactant respond to changes in surface area, achieved by varying hydrostatic pressure. Although assumed to be isothermal, the gas phase temperature (Tg) would increase by >100°C during compression from 1 to 3 atm if the process were adiabatic. To determine the actual change in temperature, we monitored pressure (P) and volume (V) during compressions lasting <1 s for bubbles with and without interfacial films and used P · V to evaluate Tg. P · V fell during and after the rapid compressions, consistent with reductions in n, the moles of gas phase molecules, because of increasing solubility in the subphase at higher P. As expected for a process with first-order kinetics, during 1 h after the rapid compression P · V decreased along a simple exponential curve. The temporal variation of n moles of gas was determined from P · V >10 min after the compression when the two phases should be isothermal. Back extrapolation of n then allowed calculation of Tg from P · V immediately after the compression. Our results indicate that for bubbles with or without interfacial films compressed to >3 atm within 1 s, the change in Tg is <2°C.


Sign in / Sign up

Export Citation Format

Share Document