scholarly journals Simulation of Diffusion Processes in Chemical and Thermal Processing of Machine Parts

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 698
Author(s):  
Kateryna Kostyk ◽  
Michal Hatala ◽  
Viktoriia Kostyk ◽  
Vitalii Ivanov ◽  
Ivan Pavlenko ◽  
...  

To solve a number of technological issues, it is advisable to use mathematical modeling, which will allow us to obtain the dependences of the influence of the technological parameters of chemical and thermal treatment processes on forming the depth of the diffusion layers of steels and alloys. The paper presents mathematical modeling of diffusion processes based on the existing chemical and thermal treatment of steel parts. Mathematical modeling is considered on the example of 38Cr2MoAl steel after gas nitriding. The gas nitriding technology was carried out at different temperatures for a duration of 20, 50, and 80 h in the SSHAM-12.12/7 electric furnace. When modeling the diffusion processes of surface hardening of parts in general, providing a specifically given distribution of nitrogen concentration over the diffusion layer’s depth from the product’s surface was solved. The model of the diffusion stage is used under the following assumptions: The diffusion coefficient of the saturating element primarily depends on temperature changes; the metal surface is instantly saturated to equilibrium concentrations with the saturating atmosphere; the surface layer and the entire product are heated unevenly, that is, the product temperature is a function of time and coordinates. Having satisfied the limit, initial, and boundary conditions, the temperature distribution equations over the diffusion layer’s depth were obtained. The final determination of the temperature was solved by an iterative method. Mathematical modeling allowed us to get functional dependencies for calculating the temperature distribution over the depth of the layer and studying the influence of various factors on the body’s temperature state of the body.

2017 ◽  
Vol 68 (3) ◽  
pp. 478-482 ◽  
Author(s):  
Katarzyna Bloch

This paper presents the results of numerical analysis of the primary magnetization curves, which were obtained under the assumptions of the theory of approach to ferromagnetic saturation described in by H. Kronm�ller. Test samples of the Fe78Si11B11 alloy were tape-shaped materials, which were subjected to isothermal annealing, not causing their crystallization. The investigated ribbons (tapes) were characterized by a very high saturation magnetization value of approximately 2T, which the thermal treatment has increased by about 10%. It was found that reason for the change of saturation magnetization of the investigated samples was the local rearrangement of atoms due to diffusion processes leading to the release of free volumes to the surface and combining of them into larger unstable defects called pseudodislocational dipoles.


Author(s):  
Meisam Soleimani ◽  
Axel Haverich ◽  
Peter Wriggers

AbstractThis paper deals with the mathematical modeling of atherosclerosis based on a novel hypothesis proposed by a surgeon, Prof. Dr. Axel Haverich (Circulation 135(3):205–207, 2017). Atherosclerosis is referred as the thickening of the artery walls. Currently, there are two schools of thoughts for explaining the root of such phenomenon: thickening due to substance deposition and thickening as a result of inflammatory overgrowth. The hypothesis favored here is the second paradigm stating that the atherosclerosis is nothing else than the inflammatory response of of the wall tissues as a result of disruption in wall nourishment. It is known that a network of capillaries called vasa vasorum (VV) accounts for the nourishment of the wall in addition to the natural diffusion of nutrient from the blood passing through the lumen. Disruption of nutrient flow to the wall tissues may take place due to the occlusion of vasa vasorums with viruses, bacteria and very fine dust particles such as air pollutants referred to as PM 2.5. They can enter the body through the respiratory system at the first place and then reach the circulatory system. Hence in the new hypothesis, the root of atherosclerotic vessel is perceived as the malfunction of microvessels that nourish the vessel. A large number of clinical observation support this hypothesis. Recently and highly related to this work, and after the COVID-19 pandemic, one of the most prevalent disease in the lungs are attributed to the atherosclerotic pulmonary arteries, see Boyle and Haverich (Eur J Cardio Thorac Surg 58(6):1109–1110, 2020). In this work, a general framework is developed based on a multiphysics mathematical model to capture the wall deformation, nutrient availability and the inflammatory response. For the mechanical response an anisotropic constitutive relation is invoked in order to account for the presence of collagen fibers in the artery wall. A diffusion–reaction equation governs the transport of the nutrient within the wall. The inflammation (overgrowth) is described using a phase-field type equation with a double well potential which captures a sharp interface between two regions of the tissues, namely the healthy and the overgrowing part. The kinematics of the growth is treated by classical multiplicative decomposition of the gradient deformation. The inflammation is represented by means of a phase-field variable. A novel driving mechanism for the phase field is proposed for modeling the progression of the pathology. The model is 3D and fully based on the continuum description of the problem. The numerical implementation is carried out using FEM. Predictions of the model are compared with the clinical observations. The versatility and applicability of the model and the numerical tool allow.


Author(s):  
Anna Lubkowska ◽  
Monika Chudecka

Thermography is widely used in the medical field, including in the detection of breast disorders. The aim of the research was to characterize the range of breast surface temperature values, taking into account the entire area of the mammary gland and, independently, the nipple, in healthy women. An additional aim was to assess the symmetry of the breast temperature distribution (using an IR camera) and the correlation of temperatures with the content of adipose tissue. Thermograms were made for the right and left breasts, each time delineating the area of the entire breast and a separate area of the nipple, chest, and abdomen. Analyzing the intergroup differences in temperature of selected body areas (Tmean), it was shown that, in all cases, they were significantly higher in younger women. Statistical analysis showed no significant differences between breast and nipple temperatures in relation to the body sides. The highest temperatures within the mammary gland were recorded for the nipple area. The use of the high-resolution digital infrared thermal imaging method in early and screening preventive diagnoses of changes in the mammary gland requires individual interpretation of the results, taking into account the assessment of the physiological pattern of temperature distribution in both breasts.


According to the requirements for the technological processes of purification and separation of the seed mixture to obtain the sunflower seed material of the parent components (varietal purity – 98,0-99,9%) for all parts of the breeding and seed production process, a rational precision technological scheme of the separation processes has been developed, which includes automation of technical processes of separation means. In order to increase the efficiency of the sunflower breeding and seed-growing process, a device for automatic seed phenotyping has been added to the developed technological line, which can significantly intensify and shorten the breeding process and improve the design of the breeding program through bioinformatic data analysis and seed sorting. Functional dependencies are established and methods of automated control of precision mechanized process of seed separation are developed on the basis of coordination of its mode and technological parameters. Tape device for automatic phenotyping of sunflower seed material according to its morphological and marker features have been developed. The device are configured for high accuracy of individual measurement of the geometric dimensions of sunflower seeds with determination of their shape and color and provide low complexity and high technological implementation of the phenotyping process (determination, identification and separation) of seeds.


Author(s):  
Giselle Balaguer-Da´tiz ◽  
Nikhil Krishnan

The management of municipal solid wastes (MSW) in Puerto Rico is becoming increasingly challenging. In recent years, several of the older landfills have closed due to lack of compliance with federal landfill requirements. Puerto Rico is an island community and there is limited space for construction of new landfills. Furthermore, Puerto Rico residents generate more waste per capita than people living on the continental US. Thermal treatment, or waste to energy (WTE) technologies are therefore a promising option for MSW management. It is critical to consider environmental impacts when making decisions related to MSW management. In this paper we quantify and compare the environmental implications of thermal treatment of MSW with modern landfilling for Puerto Rico from a life cycle perspective. The Caguas municipality is currently considering developing a thermal treatment plant. We compare this to an expansion of a landfill site in the Humacao municipality, which currently receives waste from Caguas. The scope of our analysis includes a broad suite of activities associated with management of MSW. We include: (i) the transportation of MSW; (ii) the impacts of managing waste (e.g., landfill gas emissions and potential aqueous run-off with landfills; air emissions of metals, dioxins and greenhouse gases) and (iii) the implications of energy and materials offsets from the waste management process (e.g., conversion of landfill gas to electricity, electricity produced in thermal treatment, and materials recovered from thermal treatment ash). We developed life cycle inventory models for different waste management processes, incorporating information from a wide range of sources — including peer reviewed life cycle inventory databases, the body of literature on environmental impact of waste management, and site-specific factors for Puerto Rico (e.g. waste composition, rainfall patterns, electricity mix). We managed uncertainty in data and models by constructing different scenarios for both technologies based on realistic ranges of emission factors. The results show that thermal treatment of the unrecyclable part of the waste stream is the preferred option for waste management when compared to modern landfilling. Furthermore, Eco-indicator 99 method is used to investigate the human health, ecosystem quality and resource use impact categories.


2005 ◽  
Vol 864 ◽  
Author(s):  
Wilfried Vervisch ◽  
Laurent Ventura ◽  
Bernard Pichaud ◽  
Gérard Ducreux ◽  
André Lhorte

AbstractWhen platinum is diffused at temperatures higher than 900°C in Cz or FZ low doped n-type silicon samples, which are then cooled slowly in the range [1-10]°C/min, a p-type doping leading to the formation of a pn junction can be observed by spreading resistance measurement. The lower the cooling rate, the deeper the junction is. This junction disappears after a second thermal treatment finishing with a quenching step. A platinum related complex formation is considered to explain this reversible doping behaviour. Different possible interactions between platinum and other impurities such as dopant atoms, intrinsic point defects, and common residual impurities (C, Oi, transition metallic atoms) are studied here. Experimental results from Pt diffusion processes in different qualities of silicon wafers, and simulation results, lead to the conclusion that the platinum related p-type doping effect is due to the formation of a Pts-Oi complex.


2006 ◽  
Vol 15-17 ◽  
pp. 537-542
Author(s):  
Eun Yi Ko ◽  
Kyung Woo Yi

Of all the processing stages for wafers, interior temperature distribution in thermal treatment furnaces has a great influence on wafer properties. Therefore, internal temperature distribution is a key factor for operating a furnace. However, it is practically impossible to directly measure temperatures within the furnace, and consequently the need for a reliable numerical model to analyze temperature distribution is becoming increasingly urgent. Exact modeling of the processing is very difficult because the structure of the furnace used for thermal treatment is very complex, with large numbers of Si wafers stacked within. Therefore, simplified modeling is necessary. The modeling strategy of the present study is to reduce the radiation calculation domain and simplify the model by replacing the wafer stack region with a single block. It is necessary to determine the vertical and horizontal effective thermal conductivities of the block to reflect radiation heat transfer between wafers. In this study, calculations were performed through numerical experimentation, using r k as the heat transfer coefficient in the direction of the radius, and v k for the vertical direction. Using these calculated property values, the temperature distribution within a 300mm thermal treatment furnace can be obtained.


Sign in / Sign up

Export Citation Format

Share Document