The unlimited complexity of biological systems and astonishing diversity of living organisms will remain the driving force of the physicochemical biology in the first third of the XXI century

2000 ◽  
Vol 26 (10) ◽  
pp. 708-709
Author(s):  
G. V. Shpakovski
2022 ◽  
Vol 4 (1) ◽  
pp. 013-018
Author(s):  
Mohini Chandrashekhar Upadhye ◽  
Mohini Chetan Kuchekar ◽  
Rohini Revansiddhappa Pujari ◽  
Nutan Uttam Sable

Biopolymers are compounds prepared by using various living organisms, including plants. These are composed of repeated units of the same or similar structure (monomers) linked together. Rubber, starch, cellulose, proteins and DNA, RNA, chitin, and peptides are some of the examples of natural biopolymers. Biopolymers are a diverse and remarkably versatile class of materials that are either produced by biological systems or synthesize from biological sources. Biopolymers are used in pharmaceutical industry and also in food industry.Naturally derived polymers are also used for conditioning benefits in hair and skin care. Biopolymers have various applications in medicine, food, packaging, and petroleum industries. This review article is focused on various aspects of biopolymers with a special emphasis on role of biopolymers in green nanotechnology and agriculture.


2008 ◽  
Vol 53 (3) ◽  
pp. 235-242 ◽  
Author(s):  
Branko Marinkovic ◽  
Miroslav Grujic ◽  
Dusko Marinkovic ◽  
Jovan Crnobarac ◽  
Jelena Marinkovic ◽  
...  

Until as recently as a century ago, the exposure of biological systems to radiation was limited only to the natural sources. Today, however, a broad range of radiation types and doses have found a wide variety of uses and applications, so much so that it would be difficult to make a list of all the areas of human activity in which radiation is used for one purpose or another. The study of radiation effects on individuals and populations as a whole has become important only with the development of methods and sources of man-made radiation. Given that what is present in this case are physical effects on biological systems (living organisms), all these methods can be placed under the heading of biophysical influences. In the last 50 years, the effects of extremely low-frequency electromagnetic fields (ELF-EMF) have been studied with great diligence. These fields are the ones most commonly found in the human environment and they have been used in our studies in this field. The present paper provides a brief review of the literature data and our findings on the effects of ELF-EMF on various crop species using the RIES (Resonant Impulse Electromagnetic Stimulation) method, developed at the Faculty of Agriculture of the University of Novi Sad.


Author(s):  
Qing-Ping Ma

Biotechnology utilizes biological systems or living organisms to create, develop, or make products. This chapter reviews the current state of biotechnology and examines its future trends. Currently, biotechnology plays key roles in medicine, agriculture, and industry. In medicine, vaccines which still rely on biological systems for their production, are the best tools to prevent infectious diseases; antibodies and RNA/DNA probes have been crucial in detecting and treating diseases; and genetic editing and gene therapy is making it possible to treat hereditary diseases. In agriculture, biotechnology is generating crops that produce high yields and need fewer inputs, crops that need fewer applications of pesticides, and crops with enhanced nutrition profiles. In industry, biotechnology is being utilized in food processing, metal ore processing, the production of chemicals, and reducing energy consumption and pollution.


Author(s):  
Margaret A. Boden

Artificial life (A-Life) models biological systems. Like AI, it has both technological and scientific aims. ‘Robots and artificial life’ explains that A-Life is integral to AI, because all the intelligence we know about is found in living organisms. AI technologists turn to biology in developing practical applications of many kinds, including robots, evolutionary programming, and self-organizing devices. Robots are quintessential examples of AI, having high visibility and being hugely ingenious—and very big business, too. Evolutionary AI, although widely used, is less well known. Self-organizing machines are even less familiar. Nevertheless, in the quest to understand self-organization, AI has been as useful to biology as biology has been to AI.


1955 ◽  
Vol 33 (6) ◽  
pp. 909-925 ◽  
Author(s):  
Gerald A. Wrenshall

A working basis is developed for the simultaneous measurement, by means of an isotopic or other label, of all transfer rates of a given chemical element in systems where its transfer between spatially separate compartments of the system must occur by way of a central compartment (mammillary systems). In addition to the measurement of all rates of transfer, the amount of the element within each compartment of a mammillary system can be determined from the same experimental data. The method is applicable in open as well as closed mammillary systems which may or may not be in a state of dynamic equilibrium, and in which rapid uniform intermixing of the element does not occur in peripheral compartments. A basis for the determination of the total rates of appearance and disappearance of multiatomic as well as monatomic substances in any compartment of a system of compartments is presented, without exchanges being restricted to mammillary or other constrained systems. However, only in compartments where chemical transformation of such molecular substances does not occur can the calculated rates of appearance and disappearance of the metabolite be interpreted as rates of transfer into and out of the compartment. Specific problems relating to the tracer measurement of transfer rates in the mammillary systems of living organisms are considered, and a check list is presented for evaluating published experimental results involving tracers as potential sources of information on transfer rates in biological systems determined by means of the above bases for calculation.


2017 ◽  
Author(s):  
Peter V. Lidsky ◽  
Raul Andino

Most living organisms age, as determined by species-specific limits to lifespan1–6. The biological driving force for a genetically-defined limit on the lifespan of a given species (herein called “lifespan setpoint”) remains poorly understood. Here we present mathematical models suggesting that an upper limit of individual lifespans protects their cohort population from infection-associated penalties. A shorter lifespan setpoint helps control pathogen spread within a population, prevents the establishment and progression of infections, and accelerates pathogen clearance from the population when compared to populations with long-lived individuals. Strikingly, shorter-living variants efficiently displace longer-living individuals in populations that are exposed to pathogens and exist in spatially structured niches. The beneficial effects of shorter lifespan setpoints are even more evident in the context of zoonotic transmissions, where pathogens undergo adaptation to a new host. We submit that the selective pressure of infectious disease provides an evolutionary driving force to limit individual lifespan setpoints after reproductive maturity to secure its kin’s fitness. Our findings have important public health implications for efforts to extend human’s lifespan.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Indra D. Sahu ◽  
Gary A. Lorigan

Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible for the survival of living organisms. In this review, a brief introduction of the most popular SDSL EPR techniques and illustrations of recent applications for studying pertinent structural and dynamic properties on membrane proteins will be discussed.


Author(s):  
Francisco Prosdocimi ◽  
Marco José ◽  
Sávio Farias

The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The Last Universal Common Ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems. Together with the view of biology as a language for chemical translation, on which proteins are encoded into nucleic acids polymers, we glimpse a point in the deep past on which this Translation mechanism could have taken place. Thus, we propose the emergence of this process shared by all biological systems as a point of interest and propose the existence of this pre-cellular entity named FUCA, as the First Universal Common Ancestor. FUCA was born in the very instant on which RNA-world replicators started to be capable to catalyze the bonding of amino acids into oligopeptides. FUCA has been considered mature when the translation system apparatus has been assembled together with the establishment of a primeval, possibly error-prone genetic code. This is FUCA, the earliest ancestor of LUCA’s lineage.


Author(s):  
Francisco Prosdocimi ◽  
Marco V José ◽  
Sávio Torres de Farias

The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The Last Universal Common Ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems. Together with the view of biology as a language for chemical translation, on which proteins are encoded into nucleic acids polymers, we glimpse a point in the deep past on which this Translation mechanism could have taken place. Thus, we propose the emergence of this process shared by all biological systems as a point of interest and propose the existence of this non-cellular entity named FUCA, as the First Universal Common Ancestor. FUCA was born in the very instant on which RNA-world replicators started to be capable to catalyze the bonding of amino acids into oligopeptides. FUCA has been considered mature when the translation system apparatus has been assembled together with the establishment of a primeval, possibly error-prone genetic code. This is FUCA, the great-grandmother of LUCA.


2019 ◽  
Vol 10 (2) ◽  
pp. 7-13
Author(s):  
Abu Sadat Mohammad Nurunnabi ◽  
Miliva Mozaffor ◽  
Mariya Tabassum ◽  
Taohidur Rahman Saikat ◽  
Nahid Kabir ◽  
...  

Biotechnology is the use of living systems and organisms to develop or make products, or any technological application that uses biological systems, living organisms or derivatives to make or modify products or processes for specific use. Biotechnology is a constantly evolving field of modern science. New tools and products developed by biotechnologists are useful in research, agriculture, industry and healthcare. Although it has many benefits including lowering our environmental footprint, and helping in diagnosis and treatment of diseases, it comes with its all-possible disadvantages. The four main societal concerns revolve around are ethical, safety, bioterrorism and environmental issues. This paper aims to describe those societal concerns raised by applications of biotechnology and possible regulations related to biotech innovations and policy implementation.   


Sign in / Sign up

Export Citation Format

Share Document