Antimicrobial Properties of Copper Alloy Surfaces, With a Focus on Hospital-Acquired Infections

2008 ◽  
Vol 2 (3) ◽  
pp. 47-56 ◽  
Author(s):  
H. Michels ◽  
W. Moran ◽  
J. Michel
2013 ◽  
Vol 8 (5) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Andreia F. Duarte ◽  
Susana Ferreira ◽  
Rosário Oliveira ◽  
Fernanda C. Domingues

The increasing incidence of hospital-acquired infections caused by multi-drug resistant pathogens, such as Acinetobacter baumannii, coupled with the low efficacy of drugs and rising treatment costs has created interest in the potential antimicrobial properties of natural products. The main objective of this work was to determine the effect of coriander essential oil on Acinetobacter baumannii in different growth phases, as well as its ability to inhibit the formation or eradication of biofilms. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of coriander oil using a microdilution broth susceptibility assay was determined. The effects of different concentrations of coriander oil (ranging from 0.125 to 4×MIC) on biofilm formation and on established biofilm were tested using 96-well microtiter plates. Crystal violet assay was used as indicator of total biofilm biomass and the biofilm viability was assessed with a XTT staining method. It was found that coriander oil presented significant antibacterial activity against all tested strains of A. baumannii, with MIC values between 1 and 4 μL/mL. The MBC values were the same as the MIC, being an indicator of the bactericidal activity of this essential oil. In what concerns the effect of this essential oil on biofilm formation inhibition was observed of at least 85% of biomass formation by all A. baumannii strains using 2×MIC of coriander oil, in addition to a decrease in the metabolic activity of the cells. After exposure to coriander oil, a decrease in 24 h and 48 h-old biofilm biomass and metabolism was seen for all tested concentrations, even with sub-inhibitory concentrations. Coriander essential oil proved to have a significant antibacterial and anti-biofilm activity and should be considered in the development of future disinfectants to control A. baumannii dissemination.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Emilie Dauvergne ◽  
Catherine Mullié

Copper has been used for its antimicrobial properties since Antiquity. Nowadays, touch surfaces made of copper-based alloys such as brasses are used in healthcare settings in an attempt to reduce the bioburden and limit environmental transmission of nosocomial pathogens. After a brief history of brass uses, the various mechanisms that are thought to be at the basis of brass antimicrobial action will be described. Evidence shows that direct contact with the surface as well as cupric and cuprous ions arising from brass surfaces are instrumental in the antimicrobial effectiveness. These copper ions can lead to oxidative stress, membrane alterations, protein malfunctions, and/or DNA damages. Laboratory studies back up a broad spectrum of activity of brass surfaces on bacteria with the possible exception of bacteria in their sporulated form. Various parameters influencing the antimicrobial activity such as relative humidity, temperature, wet/dry inoculation or wear have been identified, making it mandatory to standardize antibacterial testing. Field trials using brass and copper surfaces consistently report reductions in the bacterial bioburden but, evidence is still sparse as to a significant impact on hospital acquired infections. Further work is also needed to assess the long-term effects of chemical/physical wear on their antimicrobial effectiveness.


2016 ◽  
Vol 682 ◽  
pp. 46-52
Author(s):  
Monika Walkowicz ◽  
Piotr Osuch ◽  
Tadeusz Knych ◽  
Andrzej Mamala ◽  
Beata Smyrak ◽  
...  

The paper raises the issue of antimicrobial copper and its alloys constituting a promising solution for the constantly increasing problem of dangerous hospital-acquired infections. The major aim of the presented work is a precise analysis of antimicrobial copper alloys approved by The Environmental Protection Agency (EPA) in accordance with the Unified Numbering System, taking into account their European and international equivalent symbols as well – CEN and ISO, respectively. The analysis focuses mostly on the copper alloy types which the EPA list is composed of, their prices as well as materials and technological properties.


2012 ◽  
Vol 6 (2) ◽  
pp. 7-10
Author(s):  
Mohammad Murshed ◽  
Sabeena Shahnaz ◽  
Md. Abdul Malek

Isolation and identification of post operative hospital acquired infection was carried out from July 2008 to December 2008 in Holy Family Red Crescent Medical College Hospital (private hospital). The major pathogen of wound infection was E. coli. A total; of 120 samples were collected from the surrounding environment of post operative room like floor, bed sheets, instruments, dressing materials, catheter, nasogastric and endotracheal tube. E. coli (40%) was the predominant organism followed by S. aureus (24%). DNA fingerprinting analysis using pulsed field gel electreopheresis of XbaI restriction digested genomic DNA showed that clonal relatedness between the two clinical nd environmental isolates were 100%.DOI: http://dx.doi.org/10.3329/bjmm.v6i2.19369 Bangladesh J Med Microbiol 2012; 06(02): 7-10


2016 ◽  
pp. 39-43
Author(s):  
Dinh Binh Tran ◽  
Dinh Tan Tran

Objective: To study nosocomial infections and identify the main agents causing hospital infections at Hue University Hospital. Subjects and Methods: A cross-sectional descriptive study of 385 patients with surgical interventions. Results: The prevalence of hospital infections was 5.2%, surgical site infection was the most common (60%), followed by skin and soft tissue infections (35%), urinary tract infections (5%). Surgical site infection (11.6%) in dirty surgery. There were 3 bacterial pathogens isolated, including Staphylococcus aureus (50%), Pseudomonas aeruginosa and Enterococcusspp (25%). Conclusion: Surgical site infection was high in hospital-acquired infections. Key words: hospital infections, surgical intervention, surgical site infection, bacteria


Sign in / Sign up

Export Citation Format

Share Document