HPcc as high performance commodity computing on Top of integrated Java, CORBA, COM and Web standards

Author(s):  
G. C. Fox ◽  
W. Furmanski ◽  
T. Haupt ◽  
E. Akarsu ◽  
H. Ozdemir
10.2196/30557 ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. e30557
Author(s):  
Aditya Vaidyam ◽  
John Halamka ◽  
John Torous

Background There is a growing need for the integration of patient-generated health data (PGHD) into research and clinical care to enable personalized, preventive, and interactive care, but technical and organizational challenges, such as the lack of standards and easy-to-use tools, preclude the effective use of PGHD generated from consumer devices, such as smartphones and wearables. Objective This study outlines how we used mobile apps and semantic web standards such as HTTP 2.0, Representational State Transfer, JSON (JavaScript Object Notation), JSON Schema, Transport Layer Security (version 1.3), Advanced Encryption Standard-256, OpenAPI, HTML5, and Vega, in conjunction with patient and provider feedback to completely update a previous version of mindLAMP. Methods The Learn, Assess, Manage, and Prevent (LAMP) platform addresses the abovementioned challenges in enhancing clinical insight by supporting research, data analysis, and implementation efforts around PGHD as an open-source solution with freely accessible and shared code. Results With a simplified programming interface and novel data representation that captures additional metadata, the LAMP platform enables interoperability with existing Fast Healthcare Interoperability Resources–based health care systems as well as consumer wearables and services such as Apple HealthKit and Google Fit. The companion Cortex data analysis and machine learning toolkit offer robust support for artificial intelligence, behavioral feature extraction, interactive visualizations, and high-performance data processing through parallelization and vectorization techniques. Conclusions The LAMP platform incorporates feedback from patients and clinicians alongside a standards-based approach to address these needs and functions across a wide range of use cases through its customizable and flexible components. These range from simple survey-based research to international consortiums capturing multimodal data to simple delivery of mindfulness exercises through personalized, just-in-time adaptive interventions.


2016 ◽  
Vol 15 (04) ◽  
pp. 1650035 ◽  
Author(s):  
Tsung-Lung Li ◽  
Wen-Cai Lu

The structural and electronic characteristics of the intercalated monopotassium–rubrene (K1Rub) are studied. In the intercalated K1Rub, one of the two pairs of phenyl groups of rubrene is intercalated by potassium, whereas the other pair remains pristine. This structural feature facilitates the comparison of the electronic structures of the intercalated and pristine pairs of phenyl groups. It is found that, in contrast to potassium adsorption to rubrene, the potassium intercalation promotes the carbon [Formula: see text] orbitals of the intercalated pair of phenyls to participate in the electronic structures of HOMO. Additionally, this intercalated K1Rub is used as a testing vehicle to study the performance of a commodity computing cluster built to run the General Atomic and Molecular Electronic Structure System (GAMESS) simulation package. It is shown that, for many frequently encountered simulation tasks, the performance of the commodity computing cluster is comparable with a massive computing cluster. The high performance-cost-ratio of the computing clusters constructed with commodity hardware suggests a feasible alternative for research institutes to establish their computing facilities.


2021 ◽  
Author(s):  
Aditya Vaidyam ◽  
John Halamka ◽  
John Torous

BACKGROUND There is a growing need for the integration of patient-generated health data (PGHD) into research and clinical care to enable personalized, preventive, and interactive care, but technical and organizational challenges, such as the lack of standards and easy-to-use tools, preclude the effective use of PGHD generated from consumer devices, such as smartphones and wearables. OBJECTIVE This study outlines how we used mobile apps and semantic web standards such as HTTP 2.0, Representational State Transfer, JSON (JavaScript Object Notation), JSON Schema, Transport Layer Security (version 1.3), Advanced Encryption Standard-256, OpenAPI, HTML5, and Vega, in conjunction with patient and provider feedback to completely update a previous version of mindLAMP. METHODS The Learn, Assess, Manage, and Prevent (LAMP) platform addresses the abovementioned challenges in enhancing clinical insight by supporting research, data analysis, and implementation efforts around PGHD as an open-source solution with freely accessible and shared code. RESULTS With a simplified programming interface and novel data representation that captures additional metadata, the LAMP platform enables interoperability with existing Fast Healthcare Interoperability Resources–based health care systems as well as consumer wearables and services such as Apple HealthKit and Google Fit. The companion Cortex data analysis and machine learning toolkit offer robust support for artificial intelligence, behavioral feature extraction, interactive visualizations, and high-performance data processing through parallelization and vectorization techniques. CONCLUSIONS The LAMP platform incorporates feedback from patients and clinicians alongside a standards-based approach to address these needs and functions across a wide range of use cases through its customizable and flexible components. These range from simple survey-based research to international consortiums capturing multimodal data to simple delivery of mindfulness exercises through personalized, just-in-time adaptive interventions.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Author(s):  
Lee D. Peachey ◽  
Lou Fodor ◽  
John C. Haselgrove ◽  
Stanley M. Dunn ◽  
Junqing Huang

Stereo pairs of electron microscope images provide valuable visual impressions of the three-dimensional nature of specimens, including biological objects. Beyond this one seeks quantitatively accurate models and measurements of the three dimensional positions and sizes of structures in the specimen. In our laboratory, we have sought to combine high resolution video cameras with high performance computer graphics systems to improve both the ease of building 3D reconstructions and the accuracy of 3D measurements, by using multiple tilt images of the same specimen tilted over a wider range of angles than can be viewed stereoscopically. Ultimately we also wish to automate the reconstruction and measurement process, and have initiated work in that direction.Figure 1 is a stereo pair of 400 kV images from a 1 micrometer thick transverse section of frog skeletal muscle stained with the Golgi stain. This stain selectively increases the density of the transverse tubular network in these muscle cells, and it is this network that we reconstruct in this example.


Sign in / Sign up

Export Citation Format

Share Document