scholarly journals The fragmentation spectrum from space-time reciprocity

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Duff Neill

Abstract Analyzing the single inclusive annihilation spectrum of charged hadrons in e+e− collisions, I confront the hadronization hypothesis of local parton-hadron duality with a systematic resummation of the dependence on the small energy fraction. This resummation is based on the reciprocity between time-like and space-like splitting processes in 4 − 2ϵ-dimensions, which I extend to resum all the soft terms of the cross-section for inclusive jet production. Under the local-parton-hadron duality hypothesis, the resulting distribution of jets essentially determines the spectrum of hadrons as the jet radius goes to zero. Thus I take the resummed perturbative jet function as the non-perturbative fragmentation function with an effective infra-red coupling. I find excellent agreement with data, and comment on the mixed leading log approximation previously used to justify local parton-hadron duality.

1968 ◽  
Vol 90 (3) ◽  
pp. 435-440 ◽  
Author(s):  
E. M. Sparrow ◽  
H. S. Yu

A method of analysis is presented for determining closed-form solutions for torsion of inhomogeneous prismatic bars of arbitrary cross section, the inhomogeneity stemming from the layering of materials of different elastic properties. It is demonstrated that the solution method is very easy to apply and provides results of high accuracy. As an application, solutions are obtained for the torsion of a bar of circular cross section consisting of two materials separated by a plane interface. The results are compared with those of various limiting cases and excellent agreement is found to exist. Among the limiting cases, an exact solution was derived by Green’s functions for the problem in which the interface between the materials coincides with a diameter of the circular cross section.


Author(s):  
Dat Nguyen ◽  
Sagar Karki

Abstract Lifted bond balls in Integrated Circuit (IC) have numerous failure mechanisms. A simple external curve can confirm the open, and with package decapsulation, lifted balls can be readily observed. However, the exact cause can be difficult to identify. Most often, a cross section through the balls was performed, but it is far from being able to reveal the reason for lifted bond balls. A comprehensive FA approach is needed. Performing failure analysis through the back side of the die using Scanning Acoustic Microscopy (C-SAM) and Infra Red (IR) inspection helps to observe the conditions of the bond pads. Pulling the die from the mold compound can provide a pristine view of the bond ball-bond pad interface. This allows the detection of contaminants, both organic and inorganic, which cross sections cannot provide.


2012 ◽  
Author(s):  
Sallehuddin Ibrahim ◽  
Mohd Fua’ad Rahmat ◽  
Mustafa Musbah Elmajri ◽  
Mohammad Amri Mohammad Yunus

Matlamat kertas kerja ini ialah untuk membentangkan penyelidikan tentang penggunaan kaedah tomografi optik menggunakan penderia–penderia infra merah untuk pemantauan masa nyata terhadap zarah–zarah pepejal yang dialirkan oleh rig aliran graviti. Penderia terdiri daripada dua projeksi cahaya orthogonal dan dua projeksi cahaya melintang untuk membentuk deretan atas dan bawah menjadi empat projeksi selari. Penumpuan pancaran daripada satu sumber cahaya dan mengalirkannya melalui rejim aliran yang memastikan keamatan pancaran dikesan pada bahagian yang bertentangan disambungkan kepada agihan dan pekali serapan bagi fasa–fasa yang berbeza dalam laluan pancaran. Maklumat pada aliran yang diperolehi oleh penderia-penderia yang dipasang di bahagian atas dan bawah akan dijadikan dalam bentuk digital oleh sistem perolehan data sebelum ia dihantar ke sebuah computer untuk dianalisis untuk memaparkan keratan silang imej. Penyelidikan ini berjaya dikembangkan dan diuji menggunakan sebuah sistem tomografi infra merah untuk memaparkan kepekatan aliran dwi fasa dalam rig aliran gravity. Kata kunci: Profil kepekatan; aliran dwi fasa; tomografi optic; infra-merah; aliran pepejal The objective of this paper is to present research on the use of an optical tomography method using infra–red sensors for real–time monitoring of solid particles conveyed by a gravity flow rig. The sensor comprised two orthogonal and two diagonal light projections to form upstream and downstream arrays in a total of four parallel projections. Collimating the radiated beam from a light source and passing it through a flow regime ensures that the intensity of radiation detected on the opposite side is linked to the distribution and the absorption coefficients of the different phases in the path of the beam. The information on the flow captured using upstream and downstream infra-red sensors is digitized by the DAS system before it was passed into a computer to be analyzed in order to reconstruct the cross section image. This investigation successfully developed and tested an infra–red tomography system to profile the concentration of two phase flow in a gravity flow rig. Key words: Concentration profiles; two phase flow; optical tomography; infra–red; solid flow


In the far infra-red, the reflecting power, R, of a metal at a wave-length, λ, is connected with its specific resistance, ρ, by the Hagen-Rubens relation, 1 - R = k √ρ/λ, where k is a constant with the value 0·365 when λ is measured in μ., and ρ is the resistance of a rod of the metal 1 metre in length and 1 sq. mm. in cross-section. The relation has only a restricted range of validity: for it is based theoretically on the electromagnetic theory, which does not embody the modern conceptions of the electron theory; and a restriction for a lower wave-length limit is made in the deduction of the formula itself. Hagen and Rubens have subjected the formula to a rigid test by a series of emission measurements. At wave-lengths of 25·5 and 8·85 μ, the calculated and observed emissivities agreed usually to within about 10%. Further experiments at the same wave-lengths showed, moreover, that the emissivity changed with temperature in the manner demanded by the relation. It follows that the emissivity of a metal at sufficiently long wave-lengths is roughly proportional to the square-root of its absolute temperature.


A new experimental technique for determining the extinction cross-section of an obstacle at microwave frequencies is described. This method does not involve the measurement of fields but requires only the determination of the Q -factor of an open resonator, which can be done very accurately. By measuring the Q -factor of the resonator with no obstacle present, and then with the obstacle in two different positions a quarter wavelength apart along the axis of the resonator, the extinction cross-section can be deduced. The methodis, however, restricted to a class of obstacles possessing reflexion symmetry in a plane perpendicular to the direction of propagation of the incident wave. Experimental results with brass spheres for which the absorption is negligible (and therefore the extinction cross-section is nearly equal to the total scattering cross-section), give excellent agreement with Mie’s theory. Results are also given for steel spheres.


2016 ◽  
Vol 1133 ◽  
pp. 50-54 ◽  
Author(s):  
Siti Noorzidah Mohd Sabri ◽  
Syazana Abu Bakar ◽  
Abdul Yazid Abdul Manaf ◽  
Siti Farhana Hisham ◽  
Mohamad Azmirruddin Ahmad ◽  
...  

The purpose of this study was to prepare biphasic granules containing gypsum and carbonated apatite at low temperatures. The biphasic granules were prepared using dissolution-precipitation technique at three different temperatures 30°C, 40°C and 50°C. Characterization of the biphasic granules was determined by multiple analytical methods such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra-red (FTIR), and CHN Analysis. The obtained granules were determined by XRD as biphasic granules containing bone apatite and gypsum. The cross-section of biphasic granules was observed by SEM. The formed bone apatite was identified as B-Type carbonated apatite using FTIR The carbonate content in biphasic granules fabricated at 30°C, 40°C and 50°C were recorded by CHN analysis as 5.0 wt%, 6.1 wt% and 6.25 wt%, respectively.


10.12737/105 ◽  
2012 ◽  
Vol 1 (5) ◽  
pp. 19-22
Author(s):  
Чартий ◽  
Pavel Chartiy ◽  
Васильев ◽  
Andrey Vasilev ◽  
Шеманин ◽  
...  

Results of infra-red (IR) detector calibration on one homolog of oil saturated hydrocarbons are received. Absorption cross-section amount of this homolog is close to average absorption cross-section of saturated hydrocarbons molecules for oil of various fields. Experimental check of such approach acceptability was validated on integral absorption cross-section of n-hexane molecule. It is shown that the offered method of IR detector calibration on one component is admissible for total loss measurement of oil light fractions within the established error of 25%.


Sign in / Sign up

Export Citation Format

Share Document