scholarly journals Black holes and the swampland: the deep throat revelations

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Yixuan Li

Abstract Multi-centered bubbling solutions are black hole microstate geometries that arise as smooth solutions of 5-dimensional $$ \mathcal{N} $$ N = 2 Supergravity. When these solutions reach the scaling limit, their resulting geometries develop an infinitely deep throat and look arbitrarily close to a black hole geometry. We depict a connection between the scaling limit in the moduli space of Microstate Geometries and the Swampland Distance Conjecture. The naive extension of the Distance Conjecture implies that the distance in moduli space between a reference point and a point approaching the scaling limit is set by the proper length of the throat as it approaches the scaling limit. Independently, we also compute a distance in the moduli space of 3-centre solutions, from the Kähler structure of its phase space using quiver quantum mechanics. We show that the two computations of the distance in moduli space do not agree and comment on the physical implications of this mismatch.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2018 ◽  
Vol 33 (35) ◽  
pp. 1850210 ◽  
Author(s):  
C. L. Ahmed Rizwan ◽  
A. Naveena Kumara ◽  
Deepak Vaid ◽  
K. M. Ajith

In this paper, we investigate the Joule–Thomson effects of AdS black holes with a global monopole. We study the effect of the global monopole parameter [Formula: see text] on the inversion temperature and isenthalpic curves. The obtained result is compared with Joule–Thomson expansion of van der Waals fluid, and the similarities were noted. Phase transition occuring in the extended phase space of this black hole is analogous to that in van der Waals gas. Our study shows that global monopole parameter [Formula: see text] plays a very important role in Joule–Thomson expansion.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
George Hulsey ◽  
Shamit Kachru ◽  
Sungyeon Yang ◽  
Max Zimet

Abstract We study non-supersymmetric extremal black hole excitations of 4d $$ \mathcal{N} $$ N = 2 supersymmetric string vacua arising from compactification on Calabi-Yau threefolds. The values of the (vector multiplet) moduli at the black hole horizon are governed by the attractor mechanism. This raises natural questions, such as “what is the distribution of attractor points on moduli space?” and “how many attractor black holes are there with horizon area up to a certain size?” We employ tools developed by Denef and Douglas [1] to answer these questions.


2017 ◽  
Vol 12 (S330) ◽  
pp. 360-361 ◽  
Author(s):  
Taihei Yano ◽  

AbstractSmall-JASMINE (hearafter SJ), infrared astrometric satellite, will measure the positions and the proper motions which are located around the Galactic center, by operating at near infrared wave-lengths. SJ will clarify the formation process of the super massive black hole (hearafter SMBH) at the Galactic center. In particular, SJ will determine whether the SMBH was formed by a sequential merging of multiple black holes. The clarification of this formation process of the SMBH will contribute to a better understanding of merging process of satellite galaxies into the Galaxy, which is suggested by the standard galaxy formation scenario. A numerical simulation (Tanikawa and Umemura, 2014) suggests that if the SMBH was formed by the merging process, then the dynamical friction caused by the black holes have influenced the phase space distribution of stars. The phase space distribution measured by SJ will make it possible to determine the occurrences of the merging process.


1985 ◽  
Vol 113 ◽  
pp. 373-413 ◽  
Author(s):  
Stuart L. Shapiro

The dynamical behavior of a relaxed star cluster containing a massive, central black hole poses a challenging problem for the theorist and intriguing possibilities for the observer. The historical development of the subject is sketched and the salient features of the physical solution and its observational consequences are summarized.The full dynamical problem of a relaxed, self-gravitating, large N-body system containing a massive central black hole has all the necessary ingredients to excite the most dispassionate many-body, computational physicist: it is a time-dependent, multidimensional, nonlinear problem which must be solved over widely disparate length and time scales simultaneously. The problem has been tackled at various levels of approximation over the years. A new 2+1 dimensional Monte Carlo simulation code has been developed in appreciable generality to solve the time-dependent Fokker-Planck equation in E-J space for this problem. The code incorporates such features as (1) a particle “cloning and renormalization” scheme to provide a statistically reliable population of test particles in low density regions of phase space and (2) a time-step “adjustment” algorithm to ensure integration on local relaxation timescales without having to follow typical particles on orbital trajectories. However, critical regions in phase space (e.g. disruption “loss-cone” trajectories) can still be followed on orbital timescales. Numerical results obtained with this Monte Carlo scheme for the dynamical structure and evolution of globular star clusters and dense galactic nuclei containing massive black holes are reviewed.Recent dynamical integrations of the Einstein field equations for spherical, collisionless (Vlasov) systems in General Relativity suggest a possible origin for the supermassive black holes believed to power quasars and active galactic nuclei. This scenario is discussed briefly.


1998 ◽  
Vol 13 (03) ◽  
pp. 239-252 ◽  
Author(s):  
W. A. SABRA

An algorithm for constructing general static black hole configuration for the theory of N=2, d= 5 supergravity coupled to an arbitrary number of Abelain vector multiplets is given. The underlying very special geometry structure plays a major role in this construction. From the viewpoint of M-theory compactified on a Calabi–Yau threefold, these black holes are identified with BPS winding states of the membrane around two-cycles of the Calabi–Yau threefold, and thus are of importance in the probing of the phase transitions in the moduli space of M-theory compactified on a Calabi–Yau threefold.


2017 ◽  
Vol 14 (11) ◽  
pp. 1750164
Author(s):  
Sara Saghafi ◽  
Kourosh Nozari

By defining a noncommutative symplectic structure, we study thermodynamics of Schwarzschild black hole in a Snyder noncommutative phase space for the first time. Since natural cutoffs are the results of compactness of symplectic manifolds in phase space, the physics of black holes in such a space would be affected mainly by these cutoffs. In this respect, this study provides a basis for more deeper understanding of the black hole thermodynamics in a pure mathematical viewpoint.


2021 ◽  
Vol 30 (04) ◽  
pp. 2150026
Author(s):  
A. Belhaj ◽  
M. Benali ◽  
A. El Balali ◽  
W. El Hadri ◽  
H. El Moumni ◽  
...  

We study the shadows of four-dimensional black holes in M-theory inspired models. We first inspect the influence of M2-branes on such optical aspects for nonrotating solutions. In particular, we show that the M2-brane number can control the circular shadow size. This geometrical behavior is distorted for rotating solutions exhibiting cardioid shapes in certain moduli space regions. Implementing a rotation parameter, we analyze the geometrical shadow deformations. Among others, we recover the circular behaviors for a large M2-brane number. Investigating the energy emission rate at high energies, we find, in a well-defined approximation, that the associated peak decreases with the M2-brane number. Moreover, we investigate a possible connection with observations (from Event Horizon Telescope or future devices) from a particular M-theory compactification by deriving certain constraints on the M[Formula: see text]-brane number in the light of the [Formula: see text] observational parameters.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Milko Estrada ◽  
Rodrigo Aros

Abstract In this work it is shown that the thermodynamics of regular black holes with a cosmological horizon, which are solutions of Lovelock gravity, determines that they must evolve either into a state where the black hole and cosmological horizons have reached thermal equilibrium or into an extreme black hole geometry where the black hole and cosmological horizons have merged. This differs from the behavior of Schwarzschild de Sitter geometry which evolves into a de Sitter space, the ground state of the space of solutions. This occurs due to a phase transition of the heat capacity of the black hole horizon. To perform that analysis it is shown that at each horizon a local first law of thermodynamics can be obtained from the gravitational equations.


Sign in / Sign up

Export Citation Format

Share Document