scholarly journals TM4SF5-mediated liver malignancy involves NK cell exhaustion-like phenotypes

Author(s):  
Hyunseung Sun ◽  
Eunmi Kim ◽  
Jihye Ryu ◽  
Hyejin Lee ◽  
Eun-Ae Shin ◽  
...  

AbstractAberrant extracellular matrix and immune cell alterations within the tumor microenvironment promote the pathological progression of liver carcinogenesis. Although transmembrane 4 L six family member 5 (TM4SF5) is involved in liver fibrosis and cancer, its mechanism avoiding immune surveillance during carcinogenesis remains unknown. We investigated how TM4SF5-mediated signaling caused immune evasion using in vitro primary cells and in vivo liver tissues from genetic or chemically induced mouse models. TM4SF5-transgenic and diethylnitrosamine (DEN)-induced liver cancer mouse models exhibited fibrotic and cancerous livers, respectively, with enhanced TM4SF5, pY705STAT3, collagen I, and laminin γ2 levels. These TM4SF5-mediated effects were abolished by TM4SF5 inhibitor, 4′-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC). TM4SF5-dependent tumorigenesis involved natural killer (NK) cell exhaustion-like phenotypes including the reduction of NK cell number or function, which were blocked with TSAHC treatment. TM4SF5 expression in cancer cells downregulated stimulatory ligands and receptors for NK cell cytotoxicity, including SLAMF6, SLAMF7, MICA/B, and others. TM4SF5 suppression or inhibition reduced STAT3 signaling activity and recovered the receptor levels and NK cell surveillance, leading to reduced fibrotic and cancerous phenotypes, and longer survival. Altogether, these findings suggest that TM4SF5-mediated STAT3 activity for extracellular matrix modulation is involved in the progression of liver disease to HCC and that TM4SF5 appears to suppress NK cells during liver carcinogenesis.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


2015 ◽  
Vol 83 (8) ◽  
pp. 3074-3082 ◽  
Author(s):  
Nan Hou ◽  
Xianyu Piao ◽  
Shuai Liu ◽  
Chuang Wu ◽  
Qijun Chen

T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected withSchistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response againstS. japonicuminfection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4+and CD8+T cells, NK1.1+cells, and CD11b+cells from the livers ofS. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8+T cells or CD11b+cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbersin vitroandin vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b+cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13022-e13022
Author(s):  
Yaya Chu ◽  
Janet Ayello ◽  
Jessica Hochberg ◽  
Carmella Van de ven ◽  
James Murphy ◽  
...  

e13022 Background: A majority of children with CD20+ L/L at relapse have a chemotherapy resistant phenotype (Cairo et al Blood, 2007; JCO, 2012). Novel, non-chemotherapy-based therapies are desperately needed for this poor risk population. NK cells play an important role in tumor surveillance post allogeneic stem cell transplantation (Beziat V et al, Leukemia, 2009) but cell number and tumor recognition limit adoptive NK cell therapy (Shereck/Cairo, PBC 2007). PBNK cells expanded with genetically engineered K562-mbIL15-41BBL cells (geK562) have been previously reported (Imai C et al, Blood. 2005). Objective: We investigated the functional activities and cytolytic effect of anti-CD20 chimeric antigen receptor (CAR+) engineered PBNK cells expanded with mK562 against CD20+ L/L both in vitro and in vivo. Methods: Peripheral blood mononuclear cells (PBMC) were expanded with mitomycin C treated geK562 cells in culture medium with 10 IU/ml IL-2 for 7 or 14 days. CD56 and CD3 expression were evaluated by flow cytometry. Retrovirus preps that express CAR+ or CAR- were generated independently. The CAR+ was constructed in a MSCV-anti-CD20BB-CD3-zeta-GFP plasmid (generously supplied by Dario Campana, MD, PhD). Expanded PBMC were transduced with retroviruses as described (Imai C et al, Blood. 2005). NK cytotoxicity was assessed by europium release assay at 2:1 E:T ratio against CD20+ Ramos. Results: CD56+CD3- PBNK cells were significantly increased compared to media alone at day7 (60.94+ 3.63% vs 8.05+0.49%, n=6, p<0.001). CD56-CD3+ PBT cells were significantly reduced compared to media alone at day 7 (22.08+2.22% vs 75.73+0.75%, n=6, p<0.001). CAR+ and CAR- retrovirus supernants infected expanded PBMC at 1%-10% range. The anti-CD20 CAR expression was further confirmed by flow cytometry and western blot. We also observe that cytotoxicity was enhanced with CAR+ PBNK compared to CAR- PBNK (41+ 1.1% vs 24.5+ 3.7%) against Ramos at E:T ratio 2:1. Conclusions: PBNK can be expanded with geK562. Anti-CD20 CAR enhances PBNK anti-tumor activity against CD20+ Ramos. Future directions include characterizing the cytotoxicity activity of engineered PBNK against L/L in vitro and survival in xenogafted mice.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 210-210 ◽  
Author(s):  
Chen Xilin ◽  
Jianfeng Han ◽  
Chu Jianhong ◽  
Walter Meisen ◽  
Zhang Jianying ◽  
...  

Abstract Natural killer (NK) cells are innate lymphocytes that can rapidly eradicate tumor cells, especially those lacking MHC Class I molecules. NK cells can also rapidly eradicate herpes virus-infected cells. We designed an oncolytic herpes virus (oHSV) to selectively infect, replicate within, and lyse glioblastoma (GBM), a devastating brain tumor with a median survival of only 15 months following diagnosis. We have shown that the rapid influx of NK cells limits oHSV efficacy in GBM as they impede oHSV replication and spread [Alvarez-Breckenridge et al., Nat Med, 2012, 18(12):1827-34]. In the current study, we developed NK cell-based novel GBM therapies by decreasing the brain influx of NK cells to enhance the efficacy of oHSV, while arming NK cells in the brain with a chimeric antigen receptor (CAR) that targets both the wild-type EGFR and its mutant form EGFRvIII, two GBM tumor-associated antigens. We then investigated the synergistic effects between EGFR-CAR NK cells and oHSV. Transforming growth factor (TGF)-β is a potent immunosuppressive cytokine of NK cells [Yu et al, Immunity, 2006, 24(5):575-90]. We first determined if oHSV efficacy for treatment of GBM would be augmented by inhibiting anti-oHSV activity of NK cells with TGF-β pre-treatment. In vitro, NK cells pre-treated with TGF-β displayed less cytolytic capacity against oHSV-infected GBM cell lines and patient-derived GBM stem-like cells. In viral replication assays, co-culturing oHSV-infected GBM cells with NK cells pre-treated with TGF-β significantly increased virus titers. In an immunocompetent syngeneic GBM mouse model,administration of TGF-β to GBM-bearing mice prior to oHSV injection significantly inhibited intracranial infiltration and activation of NK cells (P < 0.05). In orthotopic human GBM xenograft mouse models and in syngeneic GBM mouse models, TGF-β treatment in vivo prior to oHSV therapy resulted in inhibition of NK cell infiltration, suppression of tumor growth and significantly prolonged survival of GBM-bearing mice (P < 0.05). Furthermore, depletion of NK cells incompletely blocked the positive effects of in vivo treatment of GBM with TGF-β on survival, suggesting that TGF-β may also directly act on other innate immune cells such as macrophages/microglia. These data demonstrate a single dose of TGF-β prior to oHSV administration enhances anti-tumor efficacy for GBM at least in part through the transient inhibition of the innate immune responses to oHSV infection. We next investigated whether NK cell activity could be enhanced to more directly target brain tumors while sparing eradication of oHSV. We therefore infected both human NK-92 cells and primary human NK cells to express the second generation CAR targeting both EGFR and EGFRvIII that we designed. Further, we asked if the treatment with EGFR-CAR NK cells plus oHSV could create a therapeutic synergy for the treatment to brain tumors. In vitro, compared with mock-transduced CAR-NK-cells, EGFR-CAR NK cells exhibited significantly higher cytotoxicity and IFN-γ production when co-cultured with tumor cells, for both NK-92 and primary NK cells (P < 0.01). Further, significantly higher cytolytic activity against tumor cells was obtained when CAR NK cells were combined with oHSV-1 infection of tumor cells, compared to either of the monotherapies alone (P < 0.05). In mice, to avoid oHSV clearance by the EGFR-CAR NK cells following the inoculation of the mouse with tumor cells, we administered these two agents sequentially; administering EGFR-CAR NK cells directly into the tumor first as a single injection of 2 × 106 cells, followed by intracranial infection with 2 × 105 plaque-forming units oHSV five days later, presumably after EGFR-CAR NK survival has diminished. Compared to vehicle controls, intracranial administration of either EGFR-CAR NK cells or oHSV blunted tumor growth. However, the combination of EGFR-CAR NK cells followed by oHSV infection resulted in significantly more efficient killing of tumor cells (P < 0.05) and significantly longer survival for tumor-bearing mice when compared to either monotherapy alone. Collectively, our studies demonstrate that in animal tumor models, we can combine novel NK cell and oHSV therapies to significantly improve survival. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 81 (2) ◽  
pp. 460-469 ◽  
Author(s):  
Lindsay J. Hall ◽  
Carola T. Murphy ◽  
Grainne Hurley ◽  
Aoife Quinlan ◽  
Fergus Shanahan ◽  
...  

ABSTRACTNatural killer (NK) cells are traditionally considered in the context of tumor surveillance and viral defense, but their role in bacterial infections, particularly those caused by enteric pathogens, is less clear. C57BL/6 mice were orally gavaged withCitrobacter rodentium, a murine pathogen related to human diarrheagenicEscherichia coli. We used polyclonal anti-asialo GM1 antibody to actively deplete NK cellsin vivo. Bioluminescent imaging and direct counts were used to follow infection. Flow cytometry and immunofluorescence microscopy were used to analyze immune responses. DuringC. rodentiuminfection, NK cells were recruited to mucosal tissues, where they expressed a diversity of immune-modulatory factors. Depletion of NK cells led to higher bacterial loads but less severe colonic inflammation, associated with reduced immune cell recruitment and lower cytokine levels. NK cell-depleted mice also developed disseminated systemic infection, unlike control infected mice. NK cells were also cytotoxic toC. rodentiumin vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Madhuparna Nandi ◽  
Mitterrand Muamba Moyo ◽  
Sakina Orkhis ◽  
Jeanne Masunga Faida Mobulakani ◽  
Marc-André Limoges ◽  
...  

Interleukin-15, produced by hematopoietic and parenchymal cells, maintains immune cell homeostasis and facilitates activation of lymphoid and myeloid cell subsets. IL-15 interacts with the ligand-binding receptor chain IL-15Rα during biosynthesis, and the IL-15:IL-15Rα complex is trans-presented to responder cells that express the IL-2/15Rβγc complex to initiate signaling. IL-15-deficient and IL-15Rα-deficient mice display similar alterations in immune cell subsets. Thus, the trimeric IL-15Rαβγc complex is considered the functional IL-15 receptor. However, studies on the pathogenic role of IL-15 in inflammatory and autoimmune diseases indicate that IL-15 can signal independently of IL-15Rα via the IL-15Rβγc dimer. Here, we compared the ability of mice lacking IL-15 (no signaling) or IL-15Rα (partial/distinct signaling) to control Listeria monocytogenes infection. We show that IL-15-deficient mice succumb to infection whereas IL-15Rα-deficient mice clear the pathogen as efficiently as wildtype mice. IL-15-deficient macrophages did not show any defect in bacterial uptake or iNOS expression in vitro. In vivo, IL-15 deficiency impaired the accumulation of inflammatory monocytes in infected spleens without affecting chemokine and pro-inflammatory cytokine production. The inability of IL-15-deficient mice to clear L. monocytogenes results from impaired early IFNγ production, which was not affected in IL-15Rα-deficient mice. Administration of IFNγ partially enabled IL-15-deficient mice to control the infection. Bone marrow chimeras revealed that IL-15 needed for early bacterial control can originate from both hematopoietic and non-hematopoietic cells. Overall, our findings indicate that IL-15-dependent IL-15Rα-independent signaling via the IL-15Rβγc dimeric complex is necessary and sufficient for the induction of IFNγ from sources other than NK/NKT cells to control bacterial pathogens.


Author(s):  
Qizhi Ma ◽  
Yue Chen ◽  
Qing Qin ◽  
Fuchun Guo ◽  
Yong-sheng Wang ◽  
...  

Abstract Breast cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related deaths among women worldwide. Previous studies have reported contradictory performance of chemokine CXC motif ligand 13 (CXCL13) in breast cancer. In this study, TCGA database analysis revealed that CXCL13 was overexpressed in various human cancers including breast carcinoma, and associated with good clinical prognosis in breast cancer. Flow cytometry detection also found up-regulated intracellular CXCL13 expression in human breast cancer cell lines. To explore the possible role of CXCL13 in breast cancer microenvironment, mouse triple negative breast cancer (TNBC) was lentivirally transfected to stably overexpress mouse CXCL13 (4T1-CXCL13). Both parental 4T1 and 4T1-CXCL13 strains showed no in vitro and in vivo endogenous cell surface CXCR5 expression. In immune-competent BALB/c mice, the in vivo tumor growth of 4T1-CXCL13 was significantly inhibited and even completely eradicated, accompanied with increased infiltrations of CD4+, CD8 + T lymphocytes and CD11b + CD11c + DCs. Further investigations showed that CXCL13 expression in 4T1 tumor microenvironment elicited long-term anti-tumor immune memory, and rejection of distal parental tumor. The anti-tumor activity of CXCL13 was remarkedly impaired in BALB/cA-nu nude mice, or in BALB/c mice with CD8 + T lymphocyte or NK cell depletion. Our investigation indicated that CXCL13 expression in TNBC triggered effective anti-tumor immunity by chemoattracting immune cell infiltrations, and could be considered as a novel prognostic marker for TNBC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mathilde Bizou ◽  
Romain Itier ◽  
Mina Majdoubi ◽  
Dounia Abbadi ◽  
Estelle Pichery ◽  
...  

AbstractThe lymphatic network of mammalian heart is an important regulator of interstitial fluid compartment and immune cell trafficking. We observed a remodeling of the cardiac lymphatic vessels and a reduced lymphatic efficiency during heart hypertrophy and failure induced by transverse aortic constriction. The lymphatic endothelial cell number of the failing hearts was positively correlated with cardiac function and with a subset of cardiac macrophages. This macrophage population distinguished by LYVE-1 (Lymphatic vessel endothelial hyaluronic acid receptor-1) and by resident macrophage gene expression signature, appeared not replenished by CCR2 mediated monocyte infiltration during pressure overload. Isolation of macrophage subpopulations showed that the LYVE-1 positive subset sustained in vitro and in vivo lymphangiogenesis through the expression of pro-lymphangiogenic factors. In contrast, the LYVE-1 negative macrophage subset strongly expressed MMP12 and decreased the endothelial LYVE-1 receptors in lymphatic endothelial cells, a feature of cardiac lymphatic remodeling in failing hearts. The treatment of mice with a CCR2 antagonist during pressure overload modified the proportion of macrophage subsets within the pathological heart and preserved lymphatic network from remodeling. This study reports unknown and differential functions of macrophage subpopulations in the regulation of cardiac lymphatic during pathological hypertrophy and may constitute a key mechanism underlying the progression of heart failure.


2021 ◽  
Vol 6 (56) ◽  
pp. eabb7800
Author(s):  
Benedikt Strunz ◽  
Jonna Bister ◽  
Hanna Jönsson ◽  
Iva Filipovic ◽  
Ylva Crona-Guterstam ◽  
...  

Immune cell differentiation is critical for adequate tissue-specific immune responses to occur. Here, we studied differentiation of human uterine natural killer cells (uNK cells). These cells reside in a tissue undergoing constant regeneration and represent the major leukocyte population at the maternal-fetal interface. However, their physiological response during the menstrual cycle and in pregnancy remains elusive. By surface proteome and transcriptome analysis as well as using humanized mice, we identify a differentiation pathway of uNK cells in vitro and in vivo with sequential acquisition of killer cell immunoglobulin-like receptors and CD39. uNK cell differentiation occurred continuously in response to the endometrial regeneration and was driven by interleukin-15. Differentiated uNK cells displayed reduced proliferative capacity and immunomodulatory function including enhanced angiogenic capacity. By studying human uterus transplantation and monozygotic twins, we found that the uNK cell niche could be replenished from circulation and that it was under genetic control. Together, our study uncovers a continuous differentiation pathway of human NK cells in the uterus that is coupled to profound functional changes in response to local tissue regeneration and pregnancy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oanh T. P. Nguyen ◽  
Patrick M. Misun ◽  
Christian Lohasz ◽  
Jihyun Lee ◽  
Weijia Wang ◽  
...  

Existing first-line cancer therapies often fail to cope with the heterogeneity and complexity of cancers, so that new therapeutic approaches are urgently needed. Among novel alternative therapies, adoptive cell therapy (ACT) has emerged as a promising cancer treatment in recent years. The limited clinical applications of ACT, despite its advantages over standard-of-care therapies, can be attributed to (i) time-consuming and cost-intensive procedures to screen for potent anti-tumor immune cells and the corresponding targets, (ii) difficulties to translate in-vitro and animal-derived in-vivo efficacies to clinical efficacy in humans, and (iii) the lack of systemic methods for the safety assessment of ACT. Suitable experimental models and testing platforms have the potential to accelerate the development of ACT. Immunocompetent microphysiological systems (iMPS) are microfluidic platforms that enable complex interactions of advanced tissue models with different immune cell types, bridging the gap between in-vitro and in-vivo studies. Here, we present a proof-of-concept iMPS that supports a triple culture of three-dimensional (3D) colorectal tumor microtissues, 3D cardiac microtissues, and human-derived natural killer (NK) cells in the same microfluidic network. Different aspects of tumor-NK cell interactions were characterized using this iMPS including: (i) direct interaction and NK cell-mediated tumor killing, (ii) the development of an inflammatory milieu through enrichment of soluble pro-inflammatory chemokines and cytokines, and (iii) secondary effects on healthy cardiac microtissues. We found a specific NK cell-mediated tumor-killing activity and elevated levels of tumor- and NK cell-derived chemokines and cytokines, indicating crosstalk and development of an inflammatory milieu. While viability and morphological integrity of cardiac microtissues remained mostly unaffected, we were able to detect alterations in their beating behavior, which shows the potential of iMPS for both, efficacy and early safety testing of new candidate ACTs.


Sign in / Sign up

Export Citation Format

Share Document