scholarly journals Macroinvertebrate interactions stimulate decomposition in WWTP effluent-impacted aquatic ecosystems

2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Tom V. van der Meer ◽  
Gea H. van der Lee ◽  
Ralf C. M. Verdonschot ◽  
Piet F. M. Verdonschot

AbstractAquatic ecosystems worldwide are impacted by an influx of nutrients and sludge particles from wastewater treatment plant (WWTP) effluents, leading to a degradation of benthic habitats and a loss of associated macroinvertebrate taxa. Hence, in habitats impacted by WWTPs, only a few tolerant macroinvertebrate taxa remain. These tolerant detritivore macroinvertebrate taxa play an important role in the degradation of organic matter, and biotic interactions between these taxa may either enhance or reduce the rate of sludge degradation. Therefore, the aim of the present study was to examine if the interaction between asellids and tubificids, both highly abundant in systems impacted by WWTP effluent, enhances the degradation of sludge. To this end, growth and reproduction of both taxa, sludge degradation and nutrient concentrations in the overlying water were measured in a 28-day laboratory experiment, subjecting WWTP sludge to 4 treatments: a control without macroinvertebrates, a tubificid, an asellid, and an asellid + tubificid treatment. Sludge degradation, phosphate concentration in the overlying water and asellid reproduction were enhanced when asellids and tubificids were jointly present, whereas tubificid growth and reproduction were hampered in comparison to the tubificid treatment. Hence, our results suggest that the biotic interactions between these tolerant detritivores stimulate sludge degradation, and thus possibly mitigating the negative impacts of WWTP-derived sludge particles on the benthic environment.

Author(s):  
Meng Zhang ◽  
Robert A. Francis ◽  
Michael A. Chadwick

Abstract Uptake and regeneration fluxes and concentrations of nutrients, i.e., nitrate (NO3−), ammonium (NH4+), phosphate (PO43−) and dissolved organic carbon (DOC), were evaluated upstream and downstream of a wastewater treatment plant (WWTP) in the River Wandle, UK, from July to October 2019. Using chamber techniques, water-specific nutrient concentrations were measured at two exposures (3 and 10 min) to calculate fluxes. The WWTP effluent contributed to elevated concentrations and modified flux rates, resulting in significant differences at the study sites. Compared with summer, the concentrations of NO3− and DOC increased while NH4+ and PO43− decreased in autumn. Nutrient fluxes varied both temporally and spatially in uptake (i.e., storage in sediments) or regeneration (i.e., release into river water). Under the actions of physical and biological processes, the fluxes of NO3− and NH4+ showed opposite flux directions. Dissolved oxygen (DO) and bioabsorption mainly affected PO43− and DOC fluxes, respectively. Specifically, across all sites, NO3− was −0.01 to +0.02 mg/(m2 s), NH4+ was −29 to +2 μg/(m2 s), PO43− was −2.0 to +0.5 μg/(m2 s), and DOC was −0.01 to +0.05 mg/(m2 s). Further, we did find that these variations were related to nutrient concentrations in the overlying water. Our results provide further evidence to show that reductions in river nutrients are paramount for improving river ecological conditions. Additionally, we suggest that more research is needed to evaluate chamber-based experimental approaches to make them more comparable to in-situ flux methods. Highlights • Sewage effluent resulted in elevated nutrient concentrations and modified fluxes. • Flux was affected by initial nutrient concentrations, DO and microbial activity. • Inexpensive approaches to study nutrient dynamics are needed for river restoration.


2009 ◽  
Vol 6 (1) ◽  
pp. 767-789 ◽  
Author(s):  
B. E. Haggard ◽  
R. J. Stoner

Abstract. Effluent discharge often increases the amount of phosphorus (P) in the water column and bed material of receiving water bodies. The goal of this study was to evaluate changes in sediment-P interactions in an effluent-driven stream over a 4-year period where hydrology and watershed P management changed dramatically. Specifically, this study evaluated (i) the equilibrium between benthic sediments and stream water dissolved P; and (ii) the amounts of select P fractions in the bed material within the fluvial channel. Sediment and water samples were collected at Columbia Hollow in northwest Arkansas from October 2003 through September 2007, and the sampling site was approximately 3 km downstream from the Decatur wastewater treatment plant (WWTP). Monthly average effluent total P (TP) concentrations were highly variable (0.30–4.80 mg L−1) from October 2003 until December 2005; however, the Decatur WWTP implemented new P management strategies in 2006 that reduced the variability in effluent TP (0.28–0.95 mg L−1). Soluble reactive P (SRP) concentrations at Columbia Hollow 3 km downstream from the effluent discharge followed the same pattern; these concentrations were positively correlated to the effluent TP (r=0.73; p<0.001). Sediment equilibrium concentrations (EPC0) were significantly less (ln transformed data, p<0.001) after the WWTP effluent reduced TP concentrations, and sediment EPC0 suggested that the stream bed material acted as a P source to the overlying water at Columbia Hollow. The effects of this effluent discharge and the WWTP management changes on sediment P dynamics were profound. Prior to implementation of WWTP P management, the effluent TP concentrations were the driving factor related to SRP concentrations in the water column and sediment EPC0. Conversely, after the P management changes the benthic sediments became the important factor likely regulating dissolved P concentrations in the stream water.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 265-272 ◽  
Author(s):  
T. Inoue ◽  
Y. Nakamura ◽  
Y. Adachi

A dynamic model, which predicts non-steady variations in the sediment oxygen demand (SOD) and phosphate release rate, has been designed. This theoretical model consists of three diffusion equations with biochemical reactions for dissolved oxygen (DO), phosphate and ferrous iron. According to this model, step changes in the DO concentration and flow velocity produce drastic changes in the SOD and phosphate release rate within 10 minutes. The vigorous response of the SOD and phosphate release rate is caused by the difference in the time scale of diffusion in the water boundary layer and that of the biochemical reactions in the sediment. Secondly, a negative phosphate transfer from water to sediment can even occur under aerobic conditions. This is caused by the decrease in phosphate concentration in the aerobic layer due to adsorption.


2009 ◽  
Vol 60 (7) ◽  
pp. 1875-1883 ◽  
Author(s):  
M. Ahnert ◽  
J. Tränckner ◽  
N. Günther ◽  
S. Hoeft ◽  
P. Krebs

Two different approaches to increase the fraction of combined water treated in the wastewater treatment plant (WWTP) which would otherwise contribute to combined sewer overflows (CSO) are presented and compared based on modelling results with regard to their efficiencies during various rain events. The first option is to generally increase the WWTP inflow according to its actual capacity rather than pre-setting a maximum that applies to worst case loading. In the second option the WWTP inflow is also increased, however, the extra inflow of combined water is bypassing the activated sludge tank and directly discharged to the secondary clarifier. Both approaches have their advantages. For the simulated time series with various rain events, the reduction of total COD load from CSOs and WWTP effluent discharged to the receiving water was up to 20% for both approaches. The total ammonia load reduction was between 6% for the bypass and 11% for inflow increase. A combination of both approaches minimises the adverse effects and the overall emission to the receiving water.


2019 ◽  
Vol 2 (2) ◽  
pp. 43-51
Author(s):  
Nuryulsen Safridar, Sri Handayani

This study aims to determine the volume of water and the concentration of the nutrient solution and the right good plant to plant growth of lettuce (lactuca sativa L). This research has been carried out in the garden experiment Jabal Ghafur Faculty of Agriculture, University of Sigli. Runs from February to April 2017. This study used a raft floating hydroponics system. Research using completely randomized design (CRD) factorial pattern that is factor of the volume of water and nutrient concentration factor of good-plant. Treatment of the water volume (V) consists of three levels ie (V1) 4 liters of water, (V2) 8 liters of water and (V3) 12 liters of water. Good treatment-plant nutrient concentrations (N) consists of three levels ie (N1) 600 ppm (N2) of 800 ppm and (N3) 1000 ppm, with three replications so overall deplore 27 experimental unit. The volume of water very significant effect on plant height and leaf length aged 10, 20 and 30 days after planting, leaf number aged 20 and 30 days after planting, heavy wet stover age 30 HST, significantly affect the amount of leaf age 10 HST. Good-plant nutrients very significant effect on plant height ages of 20 and 30 days after planting, leaf number and length of leaf age 30 HST, significant effect on plant height HST age 10, age 20 HST leaf length, weight of wet age 30 HST stover.  Keywords: lettuce, hydroponics, water volume and concentration of good-plant nutrients


2015 ◽  
Vol 12 (3) ◽  
pp. 445-452
Author(s):  
Baghdad Science Journal

The role of filamentous bacteria represented by Streptomycessp was studied as biological treatment for activated sludge AL- Restomia treatment unit in Baghdad city. The result shows reducing in phosphate concentration where apprise in started entrance the treatment unit 12.083 mg/L fast the unit stages reached to 8.426 mg /L where nitrate concentration apprises 3.59 mg/l and ending in 2.43 mg/L The concentration of ammonia apprises 1358 mg/L and reached to 140 mg/L. also the TDS concentration reduced from 1426 to 1203 mg/L where nutrient which represented (SO4, Mg, Ca, Na, K) reduced by range 30.883- 23.337 , 194- 121 , 440- 321 , 109.03- 101.53 and 16.85- 15.4mg/L respectively COD reduce from427.263- 82mg/L with absorbance0.018- 0.027 nm.


Behaviour ◽  
2019 ◽  
Vol 156 (15) ◽  
pp. 1495-1517 ◽  
Author(s):  
Adrienne R. McLean ◽  
Sherry N.N. Du ◽  
Jasmine A. Choi ◽  
Brett M. Culbert ◽  
Erin S. McCallum ◽  
...  

Abstract Wastewater from municipal, agricultural and industrial sources is a pervasive contaminant of aquatic environments worldwide. Most studies that have investigated the negative impacts of wastewater on organisms have taken place in a laboratory. Here, we tested whether fish behaviour is altered by exposure to environmentally relevant concentrations of wastewater effluent in the field. We caged bluegill sunfish (Lepomis macrochirus) for 28 days at two sites downstream (adjacent to and 870 m) from a wastewater treatment plant and at a reference site without wastewater inputs. We found that exposed fish had a dampened response to simulated predation compared to unexposed fish, suggesting that fish may be at greater risk of predation after exposure to wastewater effluent. Fish held at the different sites did not differ in activity and exploration. Our results suggest that predator avoidance may be impaired in fish exposed to wastewater effluent, which could have detrimental implications for aquatic communities.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1085 ◽  
Author(s):  
Fan Liu ◽  
Nadia Nord ◽  
Kai Bester ◽  
Jes Vollertsen

Microplastic (MP) pollution is a global environmental issue, and traditionally treated wastewater has been identified as a source of land-based microplastics into the aquatic environment. This study evaluated the performance of a pilot-scale biofilter to polish wastewater treatment plant (WWTP) effluent before it enters the environment. The filter was divided into four zones, allowing the concentration of microplastics to be followed through the filter. It was fed with secondary effluent from a conventional WWTP in Denmark. The raw effluent from the WWTP contained 917 items m−3 which corresponded to a mass concentration of 24.8 µg m−3. After the top layer of the biofilter, the concentration had decreased to a median value of 197 item m−3 and 2.8 µg m−3, indicating an overall removal efficiency of 79% in terms of particle number and 89% in terms of particle mass. We also observed a tendency that MP of larger size and higher particle mass were more likely to be retained. After the last filtration zone, all MP larger than 100 µm had been removed. The results of this study demonstrate that biofilters are able to lower the MP abundance in treated wastewater significantly, but a complete removal is not ensured, hence some MP, particularly small-sized ones, can still be discharged into the receiving environment.


2011 ◽  
Vol 63 (7) ◽  
pp. 1349-1356 ◽  
Author(s):  
C. Michon ◽  
M.-N. Pons ◽  
P. Bauda ◽  
H. Poirot ◽  
O. Potier

Rivers used for drinking water production might be subject to anthropogenic pollution discharge upstream of the intake point. This problem was investigated in the case of the Moselle River, used for water production in Nancy (350,000 inhabitants) and which might be impacted by industrial activities 60 km upstream. The arsenic flux of a pulp and paper mill discharging in the Moselle River at this location has been more specifically investigated. The main sources of arsenic in that mill seemed to be the recovered papers and the gravel pit water used as feed water. The arsenic input related to wood and bark was limited. The main arsenic outputs from the plant were the paper produced on site and the deinking sludge. The arsenic concentration in the effluent of the wastewater treatment plant (WWTP) was not correlated to the one in the gravel pit water, but may depend on the operating conditions of the WWTP or the changes in processes of the mill. The impact of this anthropogenic source of arsenic on the Moselle River was slightly larger in summer, when the flowrate was lower. Globally the impact of the paper mill on the Moselle River water quality was limited in terms of arsenic.


2015 ◽  
Vol 81 (20) ◽  
pp. 7215-7222 ◽  
Author(s):  
B. Prevost ◽  
F. S. Lucas ◽  
K. Ambert-Balay ◽  
P. Pothier ◽  
L. Moulin ◽  
...  

ABSTRACTAlthough clinical epidemiology lists human enteric viruses to be among the primary causes of acute gastroenteritis in the human population, their circulation in the environment remains poorly investigated. These viruses are excreted by the human population into sewers and may be released into rivers through the effluents of wastewater treatment plants (WWTPs). In order to evaluate the viral diversity and loads in WWTP effluents of the Paris, France, urban area, which includes about 9 million inhabitants (approximately 15% of the French population), the seasonal occurrence of astroviruses and noroviruses in 100 WWTP effluent samples was investigated over 1 year. The coupling of these measurements with a high-throughput sequencing approach allowed the specific estimation of the diversity of human astroviruses (human astrovirus genotype 1 [HAstV-1], HAstV-2, HAstV-5, and HAstV-6), 7 genotypes of noroviruses (NoVs) of genogroup I (NoV GI.1 to NoV GI.6 and NoV GI.8), and 16 genotypes of NoVs of genogroup II (NoV GII.1 to NoV GII.7, NoV GII.9, NoV GII.12 to NoV GII.17, NoV GII.20, and NoV GII.21) in effluent samples. Comparison of the viral diversity in WWTP effluents to the viral diversity found by analysis of clinical data obtained throughout France underlined the consistency between the identified genotypes. However, some genotypes were locally present in effluents and were not found in the analysis of the clinical data. These findings could highlight an underestimation of the diversity of enteric viruses circulating in the human population. Consequently, analysis of WWTP effluents could allow the exploration of viral diversity not only in environmental waters but also in a human population linked to a sewerage network in order to better comprehend viral epidemiology and to forecast seasonal outbreaks.


Sign in / Sign up

Export Citation Format

Share Document